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一、常用知识  
常用框架  

 

常用数值  

#include <bits/stdc++.h> // 万能头文件，包含几乎所有STL

#include <iostream>

#include <cstdio>

#include <cctype>

#include <cmath>

#include <cstring>

#include <string>

#include <vector>

#include <algorithm>

#include <queue>

#include <stack>

using namespace std;

// 定义简写，手写速度更快

typedef long long ll;

typedef pair<int, int> pii;

#define pb push_back

#define all(x) (x).begin(), (x).end()

#define fi first

#define se second

#define endl '\n' // 避免flush缓冲区，比std::endl快得多
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int main() {

    // 关流同步，C++输入输出提速关键，开启后不要混用cin/cout和scanf/printf

    ios::sync_with_stdio(0);

    cin.tie(0); cout.tie(0);

    // 设置输出浮点数精度（例如保留10位小数）

    cout << fixed << setprecision(10);

    return 0;

}
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// 【无穷大】

// int型的无穷大，推荐 0x3f3f3f3f (约10^9)

// 好处：两个INF相加不会溢出int，且可以用memset赋值

const int INF = 0x3f3f3f3f; 

// long long型的无穷大，推荐 4e18 (2^62左右)

const ll LLINF = 4e18; 

// 【数学常量】

const double PI = acos(-1.0);

const double EPS = 1e-9; // 浮点数比较误差

1
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数据规模 N 允许的时间复杂度 常见算法

 或 状态压缩DP、DFS爆搜

Floyd、复杂DP

Floyd、区间DP、高斯消元

 

memset  

 

数据范围  
int : 范围 。

注意：如果题目结果可能达到  以上（如累加和、大数相乘），必须用 long long。

long long : 范围 。

unsigned long long : 范围  (仅正数，自然溢出哈希常用)。

数组大小限制:

一般题目限制 256MB。

int  数组最大开到约 6e7  (6000万)。

long long  数组最大开到约 3e7  (3000万)。

通常二维数组 dp[5000][5000]  是极限。

 

时间复杂度  
C++ 一般 1秒 能跑  (一亿) 次基本运算。根据数据规模  选择算法：

// 【取模】

const int MOD = 1e9 + 7;

// const int MOD = 998244353; // 另一个常见模数

12

13

14

15

int dp[1005];

// 赋为 0

memset(dp, 0, sizeof(dp)); 

// 赋为 -1

memset(dp, -1, sizeof(dp)); 

// 赋为无穷大 (0x3f3f3f3f) -> 常用求最小值问题

memset(dp, 0x3f, sizeof(dp)); 

// 赋为极小值 (0xc0c0c0c0, 约 -10^9) -> 常用求最大值问题

memset(dp, 0xc0, sizeof(dp)); 

1
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数据规模 N 允许的时间复杂度 常见算法

冒泡/选择排序、基础DP、Dijkstra(朴素)

sort、堆、线段树、二分、Dijkstra(堆优化)

并查集、KMP、双指针、线性筛、差分/前缀和

必须常数极小的线性算法

 或 数论分块、快速幂、GCD
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二、常用函数  
STL  

vector 变长数组，倍增的思想

    vector<int> a(10,3);//定义一个长度为10的int类型vector，每一位都是3

    a.size(); //返回元素个数，所有容器都有

    a.empty(); //返回是否为空，所有容器都有

    a.clear(); //清空

    a.front();a.back();//返回第一个数/最后一个数

    a.push_back();a.pop_back();//向最后插入/删除一个数

    a.begin();a.end();//第一个数/最后一个数的后面一个数

    a[];// 类似于数组调用

    vector<int> a(4,3), b(3,4);

    if(a < b) puts("a < b"); //支持比较运算，使用“字典序”

    支持比较运算，按字典序

pair<int, int>

    first, 第一个元

    second, 第二个元素

    支持比较运算，以first为第一关键字，以second为第二关键字（字典序）

    pair<int, pair<int, int>>

string，字符串

    string a = "lxzs";

    a += "nb"; //可以直接增加

    a.size();

    a.empty();

    a.clear;

    a.substr(1,2);//返回子串，第一个关键字是起始位置，第二个是子串长度

    printf("%s\n", a.c_str());

queue, 队列

    size()

    empty()

    push()  向队尾插入一个元素

    front()  返回队头元素

    back()  返回队尾元素

    pop()  弹出队头元素

priority_queue, 优先队列，默认是大根堆

    size()

    empty()

    push()  插入一个元素

    top()  返回堆顶元素

    pop()  弹出堆顶元素

    定义成小根堆的方式：

    priority_queue<int, vector<int>, greater<int> > q;

    priority_queue<coord, vector<coord>, decltype(&Lcmp)> pq(Lcmp);

    bool Lcmp (const coord & c1 , const coord & c2){

    return c1 .l < c2.l; }

stack, 栈

    size()

    empty()

    push()  向栈顶插入一个元素

1
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26
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    top()  返回栈顶元素

    pop()  弹出栈顶元素

deque, 双端队列

    size()

    empty()

    clear()

    front()/back()

    push_back()/pop_back()

    push_front()/pop_front()

    begin()/end()

    []

set, map, multiset, multimap, 基于平衡二叉树（红黑树），动态维护有序序列

    size()

    empty()

    clear()

    begin()/end()

    ++, -- 返回前驱和后继，时间复杂度 O(logn)

    set/multiset

        insert()  插入一个数

        find()  查找一个数

        count()  返回某一个数的个数

        erase()

            (1) 输入是一个数x，删除所有x   O(k + logn)

            (2) 输入一个迭代器，删除这个迭代器

    lower_bound()   /   upper_bound() // 找不到都返回后面

    lower_bound(x)  返回大于等于x的最小的数的迭代器

    upper_bound(x)  返回大于x的最小的数的迭代器

    //123456789递增序列     a    < x ,x，x,x,x,x,x   < b

   //                            low                  up

    map/multimap

        insert()  插入的数是一个pair

        erase()  输入的参数是pair或者迭代器

        find()

        []  注意multimap不支持此操作。 时间复杂度是 // O(logn)

        lower_bound()/upper_bound()

    

    //eg.

    map<string,int> a;

    a["lx"] = 1;

    cout << a["lx"] << endl; //时间复杂度O(log(n))

unordered_set, unordered_map, 

unordered_multiset, unordered_multimap, 哈希表

    和上面类似，增删改查的时间复杂度是 O(1)

    不支持 lower_bound()/upper_bound()， 迭代器的++，--

bitset, 圧位

    bitset<10000> s;

    ~, &, |, ^ // 取反， 位和， 位或， 位异或

    >>, <<     // 左右移动

    ==, !=

    []

48
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75

76

77

78

79
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82

83

84

85
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89
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算法板子 - https://lixu.cc

10 / 202



 

1. Sort 排序  

包含基础排序、结构体排序、Lambda表达式排序（代码更短）。

    count()  返回有多少个1

    any()  判断是否至少有一个1

    none()  判断是否全为0

    set()  把所有位置成1

    set(k, v)  将第k位变成v

    reset()  把所有位变成0

    flip()  等价于~

    flip(k) 把第k位取

101

102

103

104

105

106

107

108

109

#include<cmath>

pow(2,3)乘方运算

sqrt()

abs()

fmod(3.4,2.1)浮点取模

ceil()向上取整

floor()向下取整

round()四舍五入

cbrt()开三次方

hypot()计算斜边

sin(pi/2)

cos()

tan()

asin()

acos()

atan()

log()

log2()

log10()

#include<algorithm>

  fill(intArray,intArray+10,1)

  fill
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#include <algorithm>

#include <vector>

using namespace std;

// 【结构体定义】

struct Node {

    int id, score;

};

// 【通用比较函数 cmp】

// 规则：返回 true 表示 a 排在 b 前面

bool cmp(Node a, Node b) {

    if (a.score != b.score) 
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2. 二分查找函数 (STL版)  

前提： 数组/容器必须是有序的（通常先 sort）。
返回值： 返回的是迭代器 (iterator)，减去 .begin()  才是下标。

        return a.score > b.score; // 分数不同：按分数从大到小(降序)

    return a.id < b.id;           // 分数相同：按ID从小到大(升序)

}

void solve_sort() {

    vector<int> a = {3, 1, 4, 1, 5};

    vector<Node> v = {{1, 90}, {2, 95}, {3, 90}};

    // 1. 基础升序 (从小到大)

    sort(a.begin(), a.end()); 

    // 2. 基础降序 (从大到小)

    // 需包含 <functional> 或万能头

    sort(a.begin(), a.end(), greater<int>()); 

    // 3. 结构体排序 (使用上面的 cmp 函数)

    sort(v.begin(), v.end(), cmp);

    // 4. Lambda 表达式排序 (考试偷懒写法，无需写外部cmp函数)

    // []内捕获变量，()内参数

    sort(v.begin(), v.end(), [](Node a, Node b) {

        if (a.score != b.score) return a.score > b.score;

        return a.id < b.id;

    });

}

14

15

16

17
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31

32

33

34

35

36

37

38

void solve_binary_search() {

    vector<int> a = {1, 2, 4, 4, 4, 6, 8};

    // 目标值

    int x = 4;

    // 1. lower_bound: 查找第一个 >= x 的元素位置

    // 如果所有数都 < x，返回 a.end()

    int pos1 = lower_bound(a.begin(), a.end(), x) - a.begin();

    // pos1 = 2 (对应第一个4)

    // 2. upper_bound: 查找第一个 > x 的元素位置

    int pos2 = upper_bound(a.begin(), a.end(), x) - a.begin();

    // pos2 = 5 (对应数字6)

    // 【常见应用】

    // x 出现的次数

    int count = pos2 - pos1; 

    // 判断 x 是否存在

    bool exist = (pos1 != a.size() && a[pos1] == x);

}
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3. Vector (动态数组) 常用操作  

4. String (字符串)  

vector<int> v;

// 1. 插入与删除

v.push_back(10); // 尾插

v.pop_back();    // 尾删

// 2. 初始化大小与初值

// 开一个大小为 n，全为 -1 的数组

vector<int> v2(n, -1); 

// 3. 调整大小 (重要)

// 改变数组长度，新增加的部分默认补0

v.resize(100); 

// 4. 清空

v.clear(); // size变0，capacity不变

a.front(); // 第一个数

a.back(); // 第二个数

a.size(); // 返回数据个数

a.begin(); // 返回数组首地址迭代器

a.end(); // 返回数组尾地址迭代器（最后一个元素的下一个位置）

a.empty(); // 是否为空

a.assigm(beg, end); // 将另一个容器[x.begin(), x.end()]拷贝到a里面

a.pop_back(); // 删除最后一个元素

a.push_back(element); // 最后面加一个元素

a.insert(pos, x); // 向任意迭代器pos插入一个元素x

a.resize(n, v); // 改变数组大小为n，且赋值为v

a.erase(first, last); // 删除[first, last)之间的元素
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string s = "Hello World";

// 1. 截取子串 (起始下标, 长度)

// 常用！注意第二个参数是长度，不是结束下标

string sub = s.substr(6, 5); // "World"

// 2. 查找子串

// 返回第一次出现的下标，找不到返回 string::npos

int pos = s.find("World"); 

if (pos != string::npos) { /* 找到了 */ }

// 3. 数字转字符串 / 字符串转数字

string s_num = to_string(123); // "123"

int num = stoi("123");         // 123 (long long用 stoll)

// 4. 字典序比较

// 直接使用 < > == 即可
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5. Priority Queue (优先队列/堆)  

注意： 默认是大根堆（大的在堆顶）。

排序规则:

第一个参数：储存数据类型

第二个参数：存放底层数据结构堆的容器，改 <int>里面的 int就可以

第三个参数：比较方法，自带的有 less<int>和 greater<int>（分别大顶堆、小顶堆）。

无比较参数默认为大顶堆。

主要是排序比较函数的写法。比较函数返回1代表不满足规则，返回0代表不需要改变顺序。所以比较函数和正常的想
法可能是反着的，比如return小于号得到的是一个大顶堆。

定义里面的cmp是一个 struct结构体。有以下的定义方法：

if ("abc" < "abd") { /* true */ }18

// 1. 大根堆 (默认)

priority_queue<int> q_max;

q_max.push(5);

q_max.push(1);

int top_val = q_max.top(); // 5

q_max.pop(); // 弹出堆顶

// 2. 小根堆 (写法很长，容易忘，建议背)

// 参数：类型, 容器(vector), 比较器(greater)

priority_queue<int, vector<int>, greater<int>> q_min;

// 3. 结构体堆 (需重载 < 运算符)

struct Node {

    int x;

    // 重载 < 符号，大根堆默认逻辑：return 左 < 右

    // 如果想让 x 小的在堆顶(变相小根堆)，这里反着写 return a.x > x;

    bool operator < (const Node& a) const {

        return x < a.x; 

    }

};

priority_queue<Node> q_struct;
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priority_queue<int, vector<int>, greater<int>> q; // 小顶堆1

// 单独定义一个比较结构体

struct cmp{

    bool operator()(const Point& a, const Point$ b){

        return a.x < b.x;

    }

}

priority_queue<Point, vector<Point>, cmp> q; // 对x的大顶堆
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对于pair类型，先对 first进行降序排序，再对 second进行降序排序。

6. Map 与 Set (映射与集合)  

map  / set : 基于红黑树，有序，操作 。

unordered_map  / unordered_set : 基于哈希表，无序，操作 ，但容易被卡常或退化，考试求稳建议用 
map。

7. 去重 (Unique) 与 全排列  

// 或者直接在数据的结构体里面写

struct Point {

    int x, y;

    friend bool operator < (Point a, Point b) {//为两个结构体参数，结构体调用一定要写上friend

        return a.x < b.x; //大根堆，按x从小到大排，x大的在堆顶

    }

}

priority_queue<Point> q; // 相当于给结构体写了一个自带比较方法
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// 1. Map (键值对 Key-Value)

map<string, int> mp;

mp["apple"] = 5;

mp["banana"]++; // 默认初值为0，可以直接++

// 遍历 (C++11)

for (auto p : mp) {

    // p.first 是 Key, p.second 是 Value

    cout << p.first << " " << p.second << endl;

}

// 查找 key 是否存在

if (mp.count("apple")) { /* 存在 */ }

// 2. Set (自动去重 + 排序)

set<int> st;

st.insert(5);

st.insert(1);

st.insert(5); // 重复插入无效

// 此时 st 内部为 {1, 5}

// 获取首元素 (最小值)

int min_val = *st.begin();

// 获取末元素 (最大值)

int max_val = *st.rbegin();
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vector<int> a = {1, 1, 2, 2, 3};

// 1. 数组去重 (必须先排序!)

sort(a.begin(), a.end());

// unique 将重复元素移到末尾，返回新末尾迭代器，erase 删除后面垃圾

a.erase(unique(a.begin(), a.end()), a.end());

// 结果: {1, 2, 3}

// 2. 下一个全排列 (字典序)
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内置位运算  
注意： long long  版本要在函数名后加 ll，如 __builtin_popcountll

 

 

 

// 比如 {1, 2, 3} -> {1, 3, 2}

vector<int> p = {1, 2, 3};

do {

    // 处理当前排列 p

    for(int x : p) cout << x << " "; 

    cout << endl;

} while (next_permutation(p.begin(), p.end()));

// 循环结束条件是：已经是最大字典序 (3, 2, 1)
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int x = 12; // 二进制 1100

// 1. 计算二进制中 1 的个数

int cnt = __builtin_popcount(x); // 结果 2

// 2. 计算二进制中前导 0 的个数 (clz = count leading zeros)

int lead = __builtin_clz(x); 

// 3. 计算二进制中末尾 0 的个数 (ctz = count trailing zeros)

int trail = __builtin_ctz(x); 

// 4. 计算二进制最后一位 1 所在位置 (1-based), x=0返回0

int idx = __builtin_ffs(x);
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三、理论知识（for 选择题）  
证明算法正确性  
当证明算法的正确性时，书中给出了需要证明的三条性质：

初始化： 循环的第一次迭代之前，它为真；

保持： 如果循环的某次迭代之前它为真，那么下次迭代之前它仍然为真；

终止： 在循环终止时，不变是为我们提供了一个有用的性质，该性质有助于证明算法是正确的。

下面用插入算法举例，证明插入算法的正确性：

初始化： 当第一次迭代之前（插入算法从 j = 2开始循环），子数组仅有单个元素 A[1]组成，一个元素当然

是已经排好序的了，那么为真；

保持： 每次插入元素时，从 j-1到 1循环，把大于 A[j]的元素往后移一位，直到找到 A[j]的合适位置（记

为 k），那么将 A[j]的值插入该元素，那么从 [1,k-1]和 [k+1,j-1]均为排好序的， A[j]大于等于左边，

小于右边，总体也是排好的，所以也为真；

终止： 循环终止的条件为 j > A.length，子数组 A[1..n]由原来的 A[1..n]组成，但是是排好序的。所以

算法正确。

 

分治算法  
分治算法在本质是递归的，每层递归有三个步骤：

分解原问题为子问题，降低规模；

递归地解决这些子问题；

合并这些问题的解为原问题的解。

下面给出分治算法的分析方法，按照上面的递归步骤：假设  T(n)  是规模为  n  的一个问题的运行时间。若问题规模足
够小，如对某个常量  c ，  ，则直接求解需要常量时间，我们将其写作  。假设把原问题分解成  a  个子问
题，每个子问题的规模是原问题的  。为了解决一个规模为    的子问题，需要   的时间，所以需要  

  的时间来求解  a  个子问题。如果分解问题成子问题需要时间   ，合并子问题的解成原问题的解需要
时间  ，那么得到递归式：

若

其他

各种渐进符号  
记号：用来表示算法的运行时间，渐进给出一个函数的上界和下界。

存在正常量 、 和 ，使得对所有 ，有

就是对于任意情况，都能找到 和 使得 能夹在两个之间。称 是 的一个渐进紧确界。

O记号： 只有一个渐进上界，用来反映最坏情况也是总体的最坏运行时间。

存在正常量 和 ，使得对所有 ，有
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记号： 表示渐进下界，表示无论什么输入，程序的最好情况。

存在正常量 和 ，使得对所有 ，有

o记号： 表示非渐进紧确的上界，即程序的运行时间一定小于某个数量级。

对于任意正常量 ，存在正常量 ，使得对所有 ，有

记号： 表示非渐进紧确的下界。

对于任意正常量 ，存在正常量 ，使得对所有 ，有

Horner规则  
Horner 算法是一种高效计算多项式值的方法。对于一个  次多项式：

Horner 算法将其重写为嵌套形式，并用递推的方式计算：

这样只需  次乘法和  次加法即可完成计算，显著提高多项式计算效率。

求解递归式  

1. 代入法  

代入法本质上就是先猜后证。常见步骤：

1. 猜测解的形式

2. 用数学归纳法求出解中的常数，并证明解是正确的

2. 递归树法  

递归树是我们把程序的递归画成一棵树的结构。递归树中，每个结点表示一个单一子问题的代价，子问题对应某次递
归函数调用。我们将树中每层中的代价求和，得到每层代价，然后将所有层的代价求和，得到所有层次的总代价。

例如：求解递归式  ：
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总的代价为：
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3. 主定理  

主方法可以求解如下形式的递归式：

其中  和  是常数，  是渐进正函数。

描述的问题是：将规模为n的问题分解为a个子问题，每个子问题的规模为  ，其中  和  都是正整数。  个子问
题递归地进行求解，每个花费时间  。函数  包含问题分解和子问题解合并的代价。

定理 4.1（主定理） 

令   和   是常数，  是一个函数，  是定义在非负整数上的递归式：

其中我们将   解释为   或   。那么   有如下渐近界：

1. 若对某个常数   有   ，则   。

2. 若   ，则   。

3. 若对某个常数   有   ，且对某个常数   和所有足够大的   有  
 ，则   。

使用时我们需要先判断属于三种情况之中的哪一种：将函数  与函数   进行比较（比较的是增长规模，即幂
次大小）：

若函数   更大，如情况 1，则解为  。若函数   更大，如情况 3，则解为  
 。若两个函数大小相当，如情况 2，则乘上一个对数因子，解为  

 。

例如计算递归式：

可得  ，  ，  ，所以  ，所以  ，所以应用情况1，得
出解  。

 

几种排序  

1. 冒泡排序 (Bubble Sort)  

算法过程：从左到右，两两比较相邻元素。如果左边比右边大，就交换它们。一轮下来，最大的数会像气泡一
样“浮”到最右边。对剩下的  个元素重复此过程，直到没有元素需要交换。

时间复杂度：平均 。

空间复杂度： 。

适用场景：数据量极小，或者数据几乎已经排好序（优化后）。

稳定性：稳定（相等不交换）。
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2. 选择排序 (Selection Sort)  

算法过程：将数组分为“已排序”和“未排序”两部分。每次从未排序部分扫描找出最小值的索引，然后将这个最小
值与未排序部分的第一个元素交换。重复直到结束。

时间复杂度：始终 。

空间复杂度： 。

适用场景：数据量小，且对写操作（交换）次数敏感时（交换次数最少）。

稳定性：不稳定（远距离交换可能跳过相等的元素）。

3. 插入排序 (Insertion Sort)  

算法过程：类似打扑克牌摸牌。默认第一个元素已有序。取出下一个元素，在前面已排序的序列中从后向前扫
描，遇到比自己大的元素就将其向后移一位，直到找到合适位置插入。

时间复杂度：平均 ，最好 。

空间复杂度： 。

适用场景：数据量小，或者数据基本有序时（效率极高）。

稳定性：稳定。

4. 快速排序 (Quick Sort)  

算法过程：核心是“分治”。

1. 选基准：找一个元素作为基准（Pivot，通常选第一个或中间的）。

2. 分区 (Partition)：双指针扫描，把比基准小的扔左边，比基准大的扔右边。

3. 递归：对左右两边子数组重复上述过程，直到子数组长度为 1 或 0。

时间复杂度：平均 ，最坏 。

空间复杂度： （递归栈空间）。

适用场景：大部分场景下的首选，综合性能最强。

稳定性：不稳定。

5. 归并排序 (Merge Sort)  

算法过程：核心是“分治”与“合并”。

1. 拆分：从中间切开，递归将数组对半分割，直到只剩单个元素。

2. 合并 (Merge)：申请一个新数组（或辅助空间），双指针比较两个有序子数组的头部，谁小取谁放入新
数组，最后将剩余部分补齐。

时间复杂度：始终 。

空间复杂度： （需要额外空间）。

适用场景：数据量大且要求稳定，或者对链表排序（链表归并无需额外空间）。

稳定性：稳定。
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6. 堆排序 (Heap Sort)  

算法过程：利用完全二叉树结构。

1. 建堆：将数组看作二叉树，从最后一个非叶子节点开始，调整使其成为“大顶堆”（父节点大于子节
点）。

2. 排序：将堆顶元素（最大值）与数组末尾元素交换。

3. 调整：将堆的大小减 1，对新的堆顶进行“下沉”调整，恢复大顶堆性质。重复步骤 2 和 3。

时间复杂度： 。

空间复杂度： 。

适用场景：数据量大，且内存空间受限（无法像归并那样用  空间，也怕快排最坏情况栈溢出）。

稳定性：不稳定。

图算法相关  
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1. 广度优先搜索 BFS  

从一个起点  出发，把从  能到达的所有点按距离一圈一圈地找出来。对无权图（或者所有边权都一样，比如都看作
长度 1），BFS 找到的就是从  到其他点的最短边数路径。

使用一个队列 ，“先进先出”。

搜索顺序：

先访问所有距离  为 1 的点；

再访问所有距离为 2 的点；

……

BFS 的时间复杂度（邻接表）是

2. 深度优先搜索 DFS  

从一个顶点出发，一路沿着一条路径走到底，走不动再回溯到分叉点，换一条路继续。核心思想是递归/栈。

对每个顶点维护：

颜色：WHITE / GRAY / BLACK

发现时间 ：第一次递归到这个点的时间戳

完成时间 ：从这个点出发的所有邻接边都处理完的时间戳

前驱 

时间戳从 1 开始，每次访问/结束都自增。

括号结构（Parenthesis Theorem）：

每个顶点对应区间 。

若  是  的后代，则有嵌套关系：

如果  和  不相交，则  在 DFS 森林中互不为祖先/后代。

边的分类（只在 DFS 上定义）：

1. 树边（Tree edges）：递归过程中第一次从  访问到  的边 。

2. 后向边（Back edges）：从一个结点指向其祖先的边。

3. 前向边（Forward edges）：从结点指向其严格后代但不是树边的边。

4. 交叉边（Cross edges）：既不是祖先-后代关系，又不在同一条 DFS 树路径上的边。

典型应用：

用 DFS 看一个有向图是否是 DAG：存在后向边就有环。

后面拓扑排序、强连通分量都基于 DFS 的这些性质。

复杂度同BFS。
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3. 拓扑排序  

在一个有向无环图（DAG）中，找到一种线性顺序，把所有顶点排成列，使得：对每条边 ，  都出现在  前
面。

基于DFS： 越先完成的 f[v]越大。

1. 对图做 DFS，记录所有 。

2. 把所有顶点按  从大到小排序，得到序列 。

3. 输出  即拓扑序。

复杂度：

基于BFS： Kahn 算法，核心过程概括如下：

1. 找起点：统计所有点的入度，将所有入度为 0 的点放入队列。

2. 删边：

取出队头，加入结果序列。

遍历该点的出边，将所有下游点的入度减 1。

若某点入度减为 0，将其入队。

3. 判环：重复上述过程直到队列为空。若结果序列的点数等于总点数，则排序成功；否则图中有环。

4. （强连通分量）  

问题：在有向图中，找出所有的强连通分量（SCC）——每个分量里任意两点互相可达。

经典算法（Kosaraju）简述一下（PPT 也隐含是这个）：

1. 对原图  做一次 DFS，记录所有顶点的完成时间 。

2. 构造转置图 （把每条有向边反向）。

3. 按照第一步得到的完成时间从大到小依次在  上做 DFS。

每次 DFS 遍历到的一整棵树就是一个 SCC。

这样可以把原图“降维”，每个 SCC 收缩成一个点，得到一个 DAG，方便后续分析。

5. 最小生成树  

在一个连通无向加权图中，找到一棵包含所有顶点、且无环的子图（树），使得边权之和最小，这棵树叫最小生成树
（MST）。

Kruskal 算法  

（适合稀疏图）

步骤：

1. 把所有边按权重从小到大排序。

2. 初始时，每个顶点自己是一个连通分量。

3. 从小到大扫描边 ：

如果  和  目前不在同一分量（加上这条边不会成环），就选这条边加入 MST，并把两个分量合并；
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算法 允许负权边 允许环 其它

Bellman–Ford ✔ ✔ 不能有从源点可达的负权环（无解）

DAG + Topo Sort ✔ ✖（DAG）  

Dijkstra ✖（必须非负） ✔  

否则跳过这条边。

4. 选到  条边停止。

常用数据结构：并查集（Disjoint Set / Union-Find）。

Prim 算法  

（适合稠密图）

步骤：

1. 随便选一个起点 ，把它加入生成树集合 。

2. 每一步：

从所有“连接  与  的边”中，找一条权值最小的 ，其中 ， ；

把  和边  加入生成树集合。

3. 重复直到所有顶点都在  中。

可以看作是对“连通边界”不断挑最便宜的边，逐渐“长”出一棵 MST。

6. 单源最短路径  

从顶点  到  的最短路径权重定义为：

是从 到 的路径 若存在路径

否则

几类问题：

单源最短路径：给定源点 ，求  对所有 。

单终点最短路径：可以在反向图里做单源。

单对最短路径：只关心某一对 。

任意两点最短路径（All-pairs）：可以跑  次单源，或者用 Floyd–Warshall 等

性质：最优子结构

最短路径有最优子结构：一条最短路径中的任意一段子路径，本身也是对应端点间的最短路径。

(1) Bellman–Ford 算法  

允许出现负权边。

图中可以有环，但不能有从源点可达的负权环，否则“最短路径”没有意义（可以绕环无限减小）。

BF 的特点：

是通用算法：只要没有可达负环就能给出正确结果；
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若存在可达负环，还能检测出来。

核心：松弛操作：

若

 则更新：

步骤：

1. 初始化单源：

对所有 ，

2. 重复  轮：

对图中每条边 ：做一次 relax(u,v)

3. 最后再扫描一遍所有边 ：

如果还能满足 ，说明存在可达负环（否则意味着还能变短）。

此时“最短路径”不存在，可以直接报错或返回 false。

输出：每个  和 。

复杂度：

 

(2) 基于拓扑排序的最短路（DAG）  

这是对有向无环图（DAG）的特殊情况，比 BF 快得多，也能处理负权边。

适用范围

图必须是 DAG（有向无环）。

边权可以是负数。

典型场景：任务依赖图、流水线、课程先修体系，边的权值是执行时间、延迟等。

算法思想

因为没有环，每条从源点出发的路径长度有限且不会“绕圈”。

只要按照拓扑序，一次性把所有边松弛一遍，就够了。

步骤：

1. 对图做拓扑排序，得到序列 。

2. 初始化单源： ，其他 ， 。

3. 按拓扑序列从前到后扫描每个顶点 ：

对每条出边  执行一次 relax(u,v)。

算法板子 - https://lixu.cc

26 / 202



因为拓扑序保证：到处理  时，所有可能到达  的路径都已经处理完了，  已经是最短的，所以每条边只需要松弛
一次。

复杂度：

 

(3) Dijkstra 算法  

适用范围

图可以有环。

所有边权必须是非负的： 。

典型案例（PPT 的百度地图例子）：

城市道路网，每条路有正长度或正耗时。求从北京到西安的最短路径。
—— 所有边权为距离/时间，非负，适合用 Dijkstra。

算法思想

Dijkstra 维持两个东西：

集合 ：已经确定最短路径长度的顶点集合。对每个 ， 。

一个最小优先队列 （通常用最小堆实现）：包含  中的顶点，按当前  排序。

大致过程：

1. 初始化：

所有顶点 ：

 中包含所有顶点（初始键值就是 ）

2. 循环直到  为空：

1. 从  里取出  最小的顶点 （Extract-Min），加入 。

2. 对  的每条出边 ：

如果  且

就更新：

并在优先队列中降低  的键值（Decrease-Key）。

因为边权非负，一旦  被从队列中“弹出”，就可以确定  已经是全局最短，不会以后再变小（这是 Dijkstra 的关键
贪心正确性依据）。
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7. 任意两点最短路径  

由于时间复杂度高，所以点数、边数一般很少，所以可以都使用邻接矩阵存储。

(1) 矩阵乘法版  

先看一条从  到  的最短路径 （假设 ）：

在  上，设  的前驱是 ，那么路径可以拆成：

其中：

 是从  到  的那一段子路径；

整条路径的长度：

关键结论：

如果  是  的最短路径，那么它的任意一段子路径（例如  的那段 ）也是  的最短路径。

这叫做最优子结构，是很多 DP 算法的基础。

🌟 用“最多  条边”的思路来写递推

定义：

从 到 ，且边数最多为 的所有路径中，最短路径的长度

如果图中没有负权环，那么任何最短路径的边数都不会超过 。

于是有：

接下来要找  的递推关系。

递推式：

考虑从  到 ，边数最多为  的最短路径。最后一条边一定是某个 ，于是：

前面一段  最多用  条边；

那段的最短长度是 ；

再加上最后一条边的长度 。

在所有可能的  中取最小，就得到：

初始条件：

 时，没有中间边：

算法板子 - https://lixu.cc

28 / 202



这就是一个标准的 DP。

🌟“慢速版”矩阵 DP 算法

设 ，EXTEND-SHORTEST-PATHS(L, W)：

输入：上一轮的矩阵  和权重矩阵 ；

输出：新的矩阵 ；

内部就是三重循环，按刚刚的递推式求每个 。

然后“慢速版任意两点最短路算法”是：

1. 

2. 对 ：

3. 返回  作为最终的最短路矩阵。

直观理解：

第一次只允许最多 1 条边（就是直接边）；

第二次允许最多 2 条边；

…

最后允许最多  条边，就囊括了所有可能长度的简单路径。

运行时间是 

(2) Floyd–Warshall 算法  

Floyd–Warshall 把注意力放在“路径中允许出现哪些中间点”上。

先定义：

对一条简单路径 ：

端点是  和 ；

其他顶点  叫做这条路的中间顶点（intermediate vertices）。

然后，对于任意一对顶点  和一个整数 ，考虑这样的路径集合：

从  到  的所有路径中，所有中间顶点都在集合  里。

在这些路径中，取一条最短的，记它的长度为 。

特别地：

当  时，不允许任何中间点，所以路径最多只有一条边（直接从  到 ）。

关键的结构性质：

对  对应的最短路径 ，有两种可能：

1. 路径  不经过顶点 ：

那么  的所有中间点都在  里；
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所以  已经是“只允许中间点在  的最短路”，也就是：

2. 路径  经过顶点 ：

那么  可以拆成两段：

其中

 是  的最短路，中间点在 ；

 是  的最短路，中间点也在 。

所以：

综上，两种情况取更小的一个：

初始条件：

 时，只允许路径长度最多一条边，所以：

由于对任意路径来说，它的中间顶点肯定属于 ，所以最终的答案是：

这就是 Floyd–Warshall 的 DP 公式。

🌟 Floyd 算法的具体流程

伪代码 FLOYD-WARSHALL(W)，可以用自然语言描述如下：

1. 初始化： ；

2. 对  从  到 ：

构造一个新矩阵 ；

对所有 ：按公式

也可以原地更新一个数组 ，不断覆盖。

3. 返回  作为最终的最短路矩阵。

直观上：

外层循环 ：逐渐允许路径中使用更多编号的中间点；

内层双循环 ：用“是否经过 ” 来更新  的最短路长度。

结论：Floyd–Warshall 算法的时间复杂度是 。
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🌟前驱矩阵 ：构造具体最短路径

为了能输出具体路径，P18 又对 Floyd 定义了一组前驱矩阵：

 表示：在所有中间顶点属于  的  最短路径中，顶点  的前驱是谁。

初值（ ）：

或

递推（ ）：

若最短路径没有因为允许使用  而变短，即

那么前驱不变：

若使用  可以得到更短的路径：

那么从  到  的最短路是

 的组合，其中最后一段是“从  到  的最短路”，

所以  的前驱就是那条  最短路中的前驱：

最终的前驱矩阵：

配合 ，就可以像前面那章一样恢复出所有最短路径。

时间复杂度：

8. 最大流  

1. 流网络与流的定义

边容量 ；

流  满足：

流的值：
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2. 残留容量与残留网络

在残留网络  中寻找增广路径。

3. 增广路径与路径残留容量

增广路径：  中从  到  的简单路径 ；

残留容量：

沿  压入  的流可增加总流量。

4. 割与最大流–最小割定理

割  的容量：

对任意流 ，任意割 ：

最大流–最小割定理：
最大流值 = 某个最小割的容量；
残留网络中无增广路径  已经是最大流。

5. Ford–Fulkerson 方法与 Edmonds–Karp 算法

Ford–Fulkerson：反复在残留网络中找增广路径、压入瓶颈流，直到没有增广路径。

1. 初始所有边的流 。

2. 构造残留网络 （一开始就是容量网络本身）。

3. 只要在  中还能找到一条从  到  的路径 ：

1. 计算路径的残留容量：

2. 对路径上的每条边做：

如果是原图中的正向边 ：

如果是残留网络中的反向边 ，即原图有 ：

4. 当再也找不到增广路径时，当前的  就是最大流。

Edmonds–Karp：在 F–F 中规定用 BFS 找最短增广路径，

实现 Edmonds–Karp 时的流程可以概括为：
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1. 初始化流 。

2. 反复执行：

1. 在当前残留网络  上，用 BFS 找一条从  到  的最短路径 ；

2. 若找不到，结束；

3. 否则计算路径瓶颈 ；

4. 沿路径更新原图的流（正向加、反向减）。

3. 返回  和 。

时间复杂度为

6. 最大二分图匹配的流模型

二分图 ；

构造  和  的容量为 1 的边，中间  边容量为 1；

跑最大流，流值 = 最大匹配大小，流量为 1 的  边就是匹配边。

Dinic算法是一个不断迭代的过程，直到无法找到流向汇点的路径为止。每一个大迭代称为一个“阶段”：

1. BFS 建立分层图：

在残留网络上从源点  进行 BFS。

标记每个节点的深度（层数）。

如果汇点  不能被标记（即  到  不连通），说明没有增广路了，算法结束，输出当前总流量。

2. DFS 多路增广（寻找阻塞流）：

在建立好的分层图上，从  出发进行 DFS。

DFS 只走满足  且剩余容量  的边。

多路增广：在一次DFS中，如果某条路走通了，回溯时不仅更新剩余容量，而且不立即结束，而是继续
尝试当前节点的其他分支。这意味着一次DFS过程可以找到多条增广路，填满当前分层图的“阻塞流”。

3. 累加流量并重复：

将DFS找到的流量加到总最大流中。

回到第1步，重新BFS建立新的分层图（因为残留网络变了，层数可能会变）。

关键优化：当前弧优化 (Current Arc Optimization)

这是Dinic算法保证时间复杂度的关键一步。

问题：在DFS过程中，如果节点  有很多邻居，我们在之前的路径探索中可能已经把通向邻居  的边流量
跑满了。下次再访问  时，如果还从  开始检查，就是浪费时间。

解决：记录每个节点当前处理到了哪条边。我们用一个数组 cur[u]  记录节点  下一次DFS时应该从哪条边开

始尝试。

效果：当一条边满流或者无法通向汇点时，这条边在当前分层图中就被“废弃”了，下次直接跳过。

Dinic 的核心逻辑是：不断重复“分层（BFS）”和“多路增广（DFS）”这两个过程，直到无法到达终点。

第一阶段：（BFS 分层）
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目的： 在残量网络中，给每个点打上“层级”标签（ dep[]  或 level[]），标记它离起点  有多远（最短路径步

数）。

规则：

1. 只走有剩余容量的边（ cap > 0）。

2. 起点  的层级为 1（或 0），它的邻居是 2，邻居的邻居是 3……

3. 如果无法从  走到 （即  没被标记层级），说明网络断了，算法结束，输出最大流。

为什么要做这一步？ 为了限制 DFS 不乱跑。我们在 DFS 时严格要求：只能从第  层走到第  层。这保证了我们
在走最短路，防止在圈里打转。

关键动作：每次 BFS 结束，顺便把 cur[]  数组重置，让它指回 head[]（所谓“将书签拨回第一页”）。

第二阶段：（DFS 多路增广）

目的： 在第一阶段划定的“层级地图”上，尽可能多地把流量从  推到 。这被称为寻找阻塞流（Blocking Flow）。

流程： 从起点  开始 DFS：

1. 检查路标：看当前点  的 cur[u]  指向哪条边。

2. 筛选路径：这条边  必须满足两个条件：

有容量（ cap > 0）。

是通向下一层的（ dep[v] == dep[u] + 1）。

3. 递归推进：如果满足，就递归计算  能往后推多少流（ dfs(v, limit)）。

4. 更新容量：

假设算出来能推 flow  的流量。

正向边减去 flow。

反向边加上 flow（这是网络流反悔机制的核心）。

 节点的剩余推流能力减去 flow。

5. 当前弧优化（关键）：

如果某条边  被榨干了（或者  后面走不通了），修改 cur[u]  指向下一条边。

下次再来到 ，直接看下一条边，绝不回头。

6. 剪枝：如果  发现所有邻居都帮不了忙（流推不出去），把 dep[u]  设为 -1（或者其它无效值），把这个点

从分层图中“删掉”，免得下次别的点又跑来问它。

第三阶段：循环

逻辑：

1. BFS 建立分层图。

2. 如果  还有层级（能走到），就跑 DFS 榨干这一层级图。

3. 榨干后，原来的短路肯定断了，回到第 1 步，重新跑 BFS 建立新的（更长的）分层图。

4. 重复，直到 BFS 找不到去  的路。
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9. 二分图  

二分图：有两类顶点  和 ，边只在  与  之间。

最大二分匹配问题：在二分图中选出尽可能多的边，使得每个顶点最多只被一条选中的边连接。

对一个二分图 ，构造如下的流网络：

1. 新增一个源点 ，连向所有左侧顶点 ，边  的容量设置为 1。

2. 对原二分图中每条边 ， ，在流网络中保留这条边，容量为 1。

3. 新增一个汇点 ，让所有右侧顶点  通过边  连接到 ，容量为 1。

然后在这个流网络上跑 Edmonds–Karp，得到最大流 。

对于每条  间的边，如果 ，就表示我们在匹配中选择了这条边；

所有这样的边组成的集合就是一个最大匹配；

最大流的值  就是最大匹配的大小（匹配边条数）。

匈牙利算法  

为了方便理解，通常把这个算法比喻成 “相亲配对” 或 “找对象”。

左边的点 ( )：男生

右边的点 ( )：女生

边 ( )：男生  对女生  有好感（愿意配对）。

match[v] = u：记录女生  当前的男朋友是 。

算法流程（也就是 dfs  的过程）：

假设现在轮到男生 阿强 找对象：

1. 阿强看上了 小红。

2. 情况一：小红单身 ( match[小红] == 0 )。

结果：太好了，阿强和小红配对成功！( match[小红] = 阿强 )。

3. 情况二：小红已经有男朋友了，男朋友是 阿珍 ( match[小红] == 阿珍 )。

这时候阿强不会通过打架抢人，而是尝试协商。

阿强对小红说：“你能让你男朋友阿珍换个对象吗？如果他能换，你就能腾出来跟我了。”

于是，系统递归去问 阿珍 ( dfs(阿珍) )：你还有其他备选吗？

如果阿珍发现他还喜欢 小丽，且小丽单身（或者小丽的男朋友也能换人...）。

阿珍就去和小丽配对了。

阿珍腾出了小红。

结果：阿强和小红配对成功！

O(VE)
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Dinic二分图  

这是基于刚才讲解的 Dinic 算法 改写的 二分图最大匹配 模板。

核心思路：将“匹配”转化为“流”

1. 建立超级源点  和超级汇点 。

2.  左侧点：连容量为 1 的边（限制每个左侧点只能匹配 1 个）。

3. 右侧点 ：连容量为 1 的边（限制每个右侧点只能被匹配 1 个）。

4. 左侧点  右侧点：如果有连边，连容量为 1 的边（表示可以匹配）。

5. 跑 Dinic：最大流量即为最大匹配数。

此模板的时间复杂度为 ，是二分图匹配中效率极高的算法。

代码使用注意事项

1. 节点编号映射：
二分图通常给出的是“左边第  个”和“右边第  个”。
在建图时，为了避免重号，右边的点通常映射为 。

左边点范围：

右边点范围：

2. 数组大小：

MAXN : 至少要大于 。

MAXE : 至少要大于 ，其中  是题目给的边数。因为还要加上源点和汇点连出去的边。

3. 时间复杂度：
对于这种所有边容量都为 1 的网络（单位网络），Dinic 的复杂度是严格的 。在二分图匹配问题
上，通常比匈牙利算法（ ）快很多，尤其是图比较密的时候。

只要题目满足以下条件，Dinic 是首选甚至是唯一解：

 (1) 大规模无权二分图最大匹配

这是 Dinic 的统治区。

数据规模：

点数  可达 。

边数  可达 。

效率：

匈牙利算法： 。如果 ，运算量约为 ，会超时（TLE）。

Dinic： 。同样的规模，运算量大幅下降，通常能稳过。

注：实际上 Dinic 在二分图上的表现等价于 Hopcroft-Karp 算法。

(2) 多重匹配（Multi-Matching）

场景：如果不只是“一夫一妻”，而是“左边的点  最多可以匹配  个右边的点，右边的点  最多可以接受  
个左边的点”。

Dinic 优势：只需在建图时修改源点/汇点的容量即可。
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 容量设为 。

 容量设为 。

匈牙利算法处理这种情况需要拆点，非常麻烦且效率低；Dinic 天然支持。

(3) 带有复杂限制的匹配

场景：比如“点A和点B不能同时被匹配”或者更复杂的流量限制。

优势：由于 Dinic 本质是网络流，你可以通过在这个图中间加额外的点、边和容量限制来通过建模解决复杂的
逻辑约束，这是单纯的匹配算法做不到的。

 

计算几何相关  

1. 线段基本性质  

🌟凸组合：

给两点

它们的凸组合是

也就是

几何意义：  就是线段  上的某一点（含端点）。所有凸组合构成的集合就是线段 。

🌟叉积：

把点当作向量，比如

定义二维向量的叉积为矩阵行列式：

几何意义：

 等于由  这四个点构成的平行四边形的有符号面积；

号的正负给出方向信息：

若 ，则相当于从  旋转到  是顺时针；

若 ，则从  到  是逆时针；

若 ，说明两向量共线。

🌟 算法 1：判断一个向量相对另一个是顺时针还是逆时针（Q1）
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问题：

已知两条有向线段  和 ，问  是否在  的顺时针方向？

做法：

把  平移到原点，相当于看向量：

计算叉积：

若 ：  在  的顺时针一侧；

若 ：在逆时针一侧；

若 ：三点共线。

这样只用加减乘和比较，没有除法。

🌟 算法 2：判断三点是左转还是右转（Q2）

问题：

已知三点 ，走 ，在  处是左转、右转还是直走？

PPT 的技巧：还是用叉积，只是换个写法。

考虑向量：

计算

若结果 ，说明  相对于  是逆时针，也就是在  处左转；

若 ，则在  处右转；

若 ，三点共线，既不左转也不右转。

🌟 算法 3：判断两线段是否相交（Q3）

问题：

给线段  和 ，判断它们是否相交（包括端点重合、一个端点落在另一段上等所有情况）。

概念：

线段  横跨（straddle）一条直线：
就是  和  在这条直线的两侧（叉积一正一负）；端点在直线上是边界情况。

结论：两线段相交当且仅当：
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1. 每一条线段都横跨对方所在的直线；

2. 或者，其中一个线段的端点落在另一个线段上（共线特例）。

伪代码 SEGMENTS-INTERSECT：

辅助函数

1. DIRECTION(p_i,p_j,p_k)：计算叉积

给出三点相对方向（>0、<0、=0）。

2. ON-SEGMENT(p_i,p_j,p_k)：已知  与线段  共线，
检查  和  是否都在 、  的区间内，
也就是看  是否在线段  内部/端点：

主过程 SEGMENTS-INTERSECT(p1,p2,p3,p4)：

1. 计算

2. 若  与  异号 且  与  异号，则两段互相横跨，返回 TRUE。

3. 否则检查四个“端点在线段上”的共线特例：

若  且 ON-SEGMENT(p3,p4,p1)  为真，也返回 TRUE；

类似对  分别检查。

4. 否则返回 FALSE。

2. 是否存在相交线段  

问题：

输入  条线段，只问一句：有没有任何一对线段相交？
不需要找出所有交点，也不关心交点坐标。

如果暴力两两判断，要做  次，相当于  次 SEGMENTS-INTERSECT，线段很多时会很慢。

使用经典的扫描线（sweeping）技巧，把时间降到 。

🌟1. 扫描线思想

在平面上竖一条从左到右移动的垂直直线（扫描线）；

扫描线从最左侧开始，慢慢向右扫过所有线段的端点；

在某个位置，只关心与扫描线相交的那些线段，把它们按“与扫描线交点的  坐标”从下到上排序，放入一个平
衡树  里。

关键事实：
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若有哪两条线段相交，那么当扫描线走到靠近交点的位置时，这两条线段在  中必定成为相邻的两条（上下紧挨
着）。

 所以我们只需要关注每次插入/删除时，某条线段在  中的前驱和后继是否与它相交，而不用所有成对检查。

🌟2. 算法 ANY-SEGMENTS-INTERSECT 的步骤

伪代码：

1. 建一个空的有序集合 ，用于维护“当前穿过扫描线的线段，按  顺序”。

2. 把所有线段的端点按  坐标从小到大排序（左端点在前，同  时先处理左端后处理右端；再用  打破平局）。

3. 依次扫描每个端点 ：

如果  是某条线段  的左端点：

1. 把  插入  中合适位置（用二分+叉积判断在谁的上面/下面）；

2. 找到  在  中的上邻居 ABOVE(T,s)  和下邻居 BELOW(T,s)，

若上邻居与  相交，或下邻居与  相交，则返回 TRUE。

如果  是某条线段  的右端点：

1. 在  中找出  的上邻居 a、下邻居 b；

2. 删除 ；

3. 如果 a 和 b 都存在，检查它们是否相交；若是，返回 TRUE。

4. 如果扫描完所有端点都没发现相交，返回 FALSE。

3. 凸包  

给点集 ，它的凸包  定义为：

面积最小的一个凸多边形 ，使得  中每个点要么在  的边界上，要么在  内部。

两种经典算法：

Graham’s scan： ；

Jarvis’s march（gift wrapping）： ，  是凸包顶点个数。

🌟 Graham 扫描算法：用栈 + 左转判断

核心想法：

1. 先按“极角”把点排一圈；

2. 然后模拟用橡皮筋绕一圈的过程：
用一个栈  存“当前可能是凸包顶点的点”，
每加入一个新点，就看最后两条边在中间点处是否左转：

左转：说明折线仍然向外鼓，新点进栈；

直走或右转：说明栈顶那个点在凸包内部，弹出它，继续检查。

步骤：

设输入点集为 ：
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1. 找到  中  坐标最小的点 ，若有并列，取最左的。

2. 把其余点按围绕  的极角从小到大排序，得到序列

若多个点极角相同，只保留距离  最远的那个。
比较极角也可用叉积实现。

3. 初始化栈：

4. 对  到 ：

设

当前新点为 

当三点  构成的折线在  处不是左转（即直线或右转）时：

POP(S)，把  从栈中弹出（说明它不在凸包上）。

当循环结束（折线在栈顶处变成左转）时，把  push 进栈： PUSH(p_i,S)。

5. 最后栈  中从底到顶依次就是凸包顶点，按逆时针顺序。

“是不是左转”的判断，还是用前面说的叉积公式：

：左转；

：非左转（直线或右转）。

复杂度结论：

选 ： ；

按极角排序： ；

主循环中，每个点最多压栈一次、弹栈一次，所以总共 。

综合：

🌟Jarvis 包裹算法（gift wrapping）

直观：

想象你拿一张硬纸，把它一边贴在最左下角的点 ，另一边拉到右方；

然后慢慢往上旋转，直到纸的边第一次碰到另一点，那点一定是凸包顶点 ；

接着把纸一边固定在 ，继续旋转找 ，……

这样一圈“包裹”下来，回到  时就得到整个凸包。

算法步骤：
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1. 找到一个显然在凸包上的点，比如 最左（或最下）的点 ，作为起点。

2. 把  作为当前点 ，然后重复：

在所有其它点中，找一个点 ，使得对任意其他点 ，

向量  相比  最“逆时针”（或者等价地，与当前基准方向极角最小）。
对于当前候选  和另一个点 ，比较：

若 ，则  更逆时针，把  换成 ；

否则保持 。

当扫描完所有点后，  就是下一个凸包顶点。

把  输出到凸包序列中，并令  继续。

3. 直到新的  又回到 ，停止。

也就是说，每确定一个凸包顶点，就需要对全部  个点扫描一遍。
 若凸包有  个顶点，总工作量是 。

复杂度结论：

当凸包点数  很少（例如所有点都集中在内部），Jarvis 算法非常快；

当  接近 （比如点都在圆上），就变成 ，反而比 Graham 慢。

4. 最近点对  

1. 预处理：按  坐标把所有点排序一次。

2. 分治：

把点集按中间的  坐标分成左右两半  和 ；

递归求出左半最近距离 ，右半最近距离 ；

令 。

3. 合并（关键步骤）：

只需考虑“一点在左、一点在右”的最近点对；

可以证明：如果这样的最近点对距离小于 ，那么这两点必定都在垂直分界线两侧距离不超过  的细长
“带状区”里；

把这条带状区内的点按  坐标排序，利用几何性质可以证明：
每个点只需要和它在  方向上常数个后继比较距离即可（经典结论：最多检查 6~8 个邻居），
就能保证不会漏掉最近点对。

FFT  
FFT实现多项式乘法过程：

1. 输入：  的系数表示：
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2. 把每个多项式扩展到长度  的系数（后面补 ）：

3. 把扩展后的系数转成在  个点上的点值：
这一步就是“多点求值（evaluation）”，如果用 FFT，只要 。

4. 在点值形式下，逐点相乘：

时间仅 。

5. 对乘完之后的  个点做插值（interpolation），还原为  的系数。
这一步用反向的 FFT（逆 DFT）也只要 。

综合下来，多项式乘法的时间是

1. 复数单位根（roots of unity）  

设

称  为“主  次单位根”。所有的  次单位根是

它们刚好在复平面的单位圆上均匀分布。欧拉公式是：

所以

这部分 PPT 讲了几个性质（只给结论）：

1. 有限群性质

2. 若  为偶数，则

（在单位圆上转半圈就是 ）

3. “等分引理”（Halving lemma）

当  为偶数时，集合

正好是所有  次单位根。

4. “求和引理”（Summation lemma）
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若  不是  的倍数，则

这个性质会用在证明逆 DFT 的公式正确。

2. DFT：在单位根处的多项式求值  

现在选取特殊的  个点：

对多项式

定义 离散傅里叶变换 DFT 为序列 ：

记作

这样，DFT 就是把“系数表示”变成“在单位根处的点值表示”。

如果直接按照定义算，每个  都需要  次乘加，总共 ，时间 ——太慢，这就是要用 FFT 加速的对象。

典型应用 4：离散信号转频域

把每个采样点  看成 ，形成序列

做 DFT 得到

这就是频谱  的离散版本，告诉你信号里分别含有多少“不同频率”的成分。

3. FFT：用分治快速计算 DFT  

FFT 使用了一个关键的分解式：

把多项式  的偶数项和奇数项分开：

那么
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这一步只是重排。

接着要在所有  上求值。注意：

利用“等分引理”，  其实就是  次单位根。于是：

1. 先对长度为  的序列“偶数系数”做 DFT，得到

2. 再对“奇数系数”做 DFT，得到

3. 再利用

把两个长度为  的 DFT 合成一个长度为  的 DFT。

这就是 FFT 的核心递推关系。伪代码结构大致是：

每一次递归，把问题大小减半（ ），做两次 FFT；

合并阶段只需一趟循环，每层 ；

总复杂度是 。

其中  在合并时既被加上又被减去，这个乘数  常称为 twiddle factor（旋转因子）。

典型应用 5：用 FFT 计算 DFT（示意版）

比如 ，输入 ，递归分解如下：

1. 拆成偶数位置  和奇数位置 ；

RECURSIVE-FFT(a):

    n = len(a)   // n 是 2 的幂

    if n == 1: return a

    a_even = (a[0], a[2], a[4], ...)

    a_odd  = (a[1], a[3], a[5], ...)

    y_even = RECURSIVE-FFT(a_even)

    y_odd  = RECURSIVE-FFT(a_odd)

    ω = e^{2πi/n}

    ω_k = 1

    for k = 0..n/2-1:

        t = ω_k * y_odd[k]

        y[k]       = y_even[k] + t

        y[k+n/2]   = y_even[k] - t

        ω_k = ω_k * ω

    return y
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2. 再对子序列长度  继续拆成长度 ，直到长度 ；

3. 自底向上，使用上述合并公式求出 。

4. 逆 DFT（inverse DFT）与卷积定理  

有了 DFT，自然要能“反过来”：给出  还原 。

逆 DFT 的公式是：

也可以写成矩阵形式，说“DFT 的矩阵  的逆矩阵是 ，其元素为 ”。从算法角度理解就够了：

如何用 FFT 实现逆 DFT？

把所有的  换成  做一次 FFT；

然后把结果每一项都除以 ；

时间也是 。

卷积定理（Convolution theorem）告诉你：

设  为长度  的序列，把它们补零到长度 ，则

这里 “ ” 是分量乘法，“ ” 是卷积。

这就是“用 FFT 做卷积 / 多项式乘法”的理论基础，对应刚才的典型应用 3。

5. 蝶形运算（butterfly）  

从递归 FFT 的合并步骤可以抽象出一个基本操作：

给定一对输入  和一个“旋转因子” ，输出一对：

把这个图形画出来就是一个 “X” 形状，所以叫 蝶形运算。

典型应用 6：2 点 DFT 的蝶形

当  时，DFT 就是：

这恰好是一次蝶形： ，输出 。

整个 FFT 可以看成是很多层、很多个蝶形堆叠起来。
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6. 迭代 FFT 与 Bit-reversal  

递归版容易理解，但在实际实现中会转成迭代版 FFT：

1. 先对输入序列进行一次 bit-reversal 重排：

把下标用二进制写出来，

把二进制位反过来，

以这个新下标重新排列数据。

例如 ：

下标  是二进制 ，翻转得到 ，即 ；

所以原来  的位置上的数会被放到新数组的下标  上。

2. 然后从“块长  的蝶形”开始，每一层把块长翻倍，直到块长 ；

3. 在每一层，对每个块做对应的蝶形运算（用不同的旋转因子 ）。

迭代式的伪代码大致是：

时间复杂度仍然是 。

典型应用 7：手算一个小例子

比如 ，输入 ：

1. 对下标  做 bit-reversal（2 位二进制）：

（0）

（2）

（1）

（3）
排成 ；

2. 第一层（块长 2）：对 、  做 2 点蝶形；

3. 第二层（块长 4）：再对上面结果做 4 点蝶形，得到最终 DFT 值。

ITERATIVE-FFT(a):

    BIT-REVERSE-COPY(a, A)   // 重排

    for s = 1 .. log2 n:

        m = 2^s

        ω_m = e^{2πi/m}

        for k = 0 .. n-1 step m:

            ω = 1

            for j = 0 .. m/2 - 1:

                t = ω * A[k+j+m/2]

                u = A[k+j]

                A[k+j]       = u + t

                A[k+j+m/2]   = u - t

                ω = ω * ω_m

    return A
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字符串相关  
给定文本串  和模式串 （ ），字母表是有限集合 ，且 。

说“  在  中以位移  出现”，意思是：  且
等价于

我们要找的是所有有效位移 valid shifts：所有满足上式的 。

1.直接匹配  

它把模式串当“模板”，从左到右枚举每个可能位移 ，每次检查：

最坏匹配时间： （每个  最多比对  个字符）

2.Rabin–Karp  

类似于哈希。把长度为  的串看成一个  进制数（或编码后的数），对模式串算一个值 ，对每个对齐窗口 
 算 ：

若  则认为匹配；或更常用：

先比模：若 ，再做一次“真匹配”检查  来排除
冲突。

举例：字母 ，算出 （展示了按位权展开）。

3.有限自动机FA  

一个有限自动机  是五元组：  读入字符时按  从状态  跳到新状态。

后缀函数（suffix function） ：

 = “  的后缀中，最长的那段，恰好也是  的前缀”的长度

转移函数：  

 FINITE-AUTOMATON-MATCHER  就是：

初始化 

逐个字符读 ，令 

若 ，说明刚读完一个匹配，输出位移 。

4. KMP算法  

对模式串 ，定义前缀函数：
且

这句话翻成中文就是：

在  的所有“真前缀”里，找一个最长的，它同时也是  的后缀；长度就是 。

平摊分析  
1. 聚集分析（Aggregate analysis）
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2. 记账法（Accounting method）

3. 势能法（Potential method）

例子（均摊复杂度均为O(1)）：

栈操作

二进制计数器

动态表扩容/收缩

凸包：总体复杂度：  

KMP：总体复杂度： 

P/NP/NPC/NPhard  
文字版关系图：

直观层级如下：

P：最容易（既能解，又能验）。

NP：容易验（不一定容易解，包含 P）。

NPC：NP 中最难的（既在 NP 里，又是 NP-hard）。

NP-hard：最难的（甚至可能无法验证，包含 NPC）。

or

P：我可以很快算出来。

NP：如果给我答案，我可以很快检查对不对。

NP-hard：这问题太难了，所有 NP 问题都没它难（或者和它一样难）。我不一定能验证答案。

NPC：我是 NP-hard 里那些“能被验证答案”的问题（即处于 NP 和 NP-hard 的交叉点）。

其它  

1. 斐波那契额数列  

f(n) {

    if (n <= 2)

        return 1;

    else

        return f(n-1) + f(n-2);

}
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2. 计数问题-卡特兰数  

用 n 个节点，能组成多少种不同形态的合法二叉树？ 记这个数为 h(n)。递推式：

另一个更简洁的递推：

显式公式：

 

h(0) = 1  （约定空树有 1 种）

h(n) = h(0)·h(n-1) + h(1)·h(n-2) + ... + h(n-1)·h(0)

1

2

h(n) = ((4n - 2) / (n + 1)) * h(n-1)1

h(n) = C(2n, n) / (n+1)1

算法板子 - https://lixu.cc

50 / 202



算法名称
平均时间复杂
度

最坏时间复杂
度

空间复杂
度

备注

冒泡排序 (Bubble Sort) 稳定

选择排序 (Selection
Sort)

不稳定

插入排序 (Insertion
Sort)

最好情况 ，稳定

快速排序 (Quick Sort) 空间用于递归栈，不稳定

归并排序 (Merge Sort) 稳定，求逆序对常用

堆排序 (Heap Sort) 不稳定

矩阵相乘 (朴素)
Strassen算法可达

同时找最大值和最小值 比较次数优化为 

多数问题 (Majority) 摩尔投票法

斐波那契 (矩阵快速幂) 朴素递归是指数级

顺序统计量 (第k小) QuickSelect算法

快速幂  

补充：以下的时间复杂度分析  
以下是下面（四到十一章）列出的算法的时间复杂度和空间复杂度汇总。

符号说明：

：数据规模（数组长度、元素个数等）

：顶点数 (Vertices)

：边数 (Edges)

：背包容量或值的范围

：字符串长度

：较小的常数或参数

四、排序与分治  
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算法名称 时间复杂度 空间复杂度 备注

装配线调度 (ALS) 可优化至  空间

钢管切割  

矩阵连乘 (MCM)  

最优二叉搜索树 (OBST) 可优化至 

最长上升子序列 (LIS) 贪心+二分优化可达 

最长公共子序列 (LCS) 可滚动数组优化空间至 

最长公共子串  

01 背包问题 空间需滚动数组

完全背包 / 多重背包 多重背包二进制拆分后为 

石子合并 (区间DP) 四边形不等式优化可达 

算法名称 时间复杂度 空间复杂度 备注

活动选择 (区间调度)  或 主要耗时在排序

Huffman 编码 使用优先队列

算法名称 时间复杂度 空间复杂度 备注

链式前向星 建图 存储结构

DFS / BFS  

拓扑排序  

Kruskal (最小生成树) 适合稀疏图

Prim (最小生成树)
 (朴素)

 (堆优
化)

 或
朴素适合稠密图

五、动态规划  

六、贪心算法  

七、图算法  

注：  为点数，  为边数
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算法名称 时间复杂度 空间复杂度 备注

Bellman-Ford (单源最短
路)

可处理负权

DAG 最短路 基于拓扑序

Dijkstra
 (朴素)

 (堆优
化)

 或
仅处理非负权边

SPFA
平均  ( )
最坏 

Bellman-Ford的队列优化

Floyd (任意两点最短路)  

矩阵相乘版本 (APSP) 类似快速幂求路径数

最大流 - EK 算法  

最大流 - Dinic 算法
二分图匹配中为

二分图匹配 (匈牙利) 基于DFS/BFS

算法名称 时间复杂度 空间复杂度 备注

LCA (倍增法)
预处理 
查询 

ST表思想

Tarjan (强连通分量 SCC)  

树的直径 两次BFS或DFS

最小费用最大流 (MCMF)
取决于流量  和 SPFA
约 

基于SPFA增广

算法名称 时间复杂度 备注

基本运算 (叉积/相交)  

多边形面积  

凸包 (Graham扫描) 瓶颈在排序

凸包 (Jarvis步进)  为凸包顶点数

最近点对 分治法

高级图论：

八、计算几何  
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算法名称 时间复杂度 备注

旋转卡壳 (直径) 需先求凸包

算法名称 时间复杂度 空间复杂度 备注

DFT (离散傅里叶)  

FFT (快速傅里叶) 用于多项式乘法、大数乘法

大数相乘 (基于FFT)  为位数

算法名称 时间复杂度 空间复杂度 备注

KMP 算法 文本长， 模式串长

有限状态机 (FA)
预处理 
匹配 

 为字符集大小

最长回文子串
 (中心扩展)

 (Manacher算法)
 

算法名称 时间复杂度 空间复杂度 备注

二分答案/查找 需单调性

并查集 (Union Find) 接近 ， 为反阿克曼函数

Trie 树 (字典树) 插入/查询 为串长

单调栈 每个元素进出栈一次

区间合并 排序耗时

最大公约数 (GCD) 欧几里得算法

树状数组 (BIT) 操作 前缀和、单点修改

差分数组
构造/修改 
还原 

区间加减

堆 (Heap)
插入/删除 
取最值 

 

九、FFT  

十、字符串  

十一、其它常用算法 & 数据结构  

算法板子 - https://lixu.cc

54 / 202



算法名称 时间复杂度 空间复杂度 备注

第 k 小堆 / 可删除堆 需配合哈希表或懒删除
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四、排序与分治  
排序  

1. 冒泡排序 (Bubble Sort)  

优化点：增加 flag  标记。如果某一轮没有发生交换，说明已经有序，直接退出。

2. 选择排序 (Selection Sort)  

3. 插入排序 (Insertion Sort)  

优化点：常用于小数组排序。采用“赋值覆盖”代替“连续交换”，速度更快。

void bubbleSort(vector<int>& a) {

    int n = a.size();

    for (int i = 0; i < n - 1; ++i) {

        bool flag = false;

        for (int j = 0; j < n - i - 1; ++j) {

            if (a[j] > a[j + 1]) {

                swap(a[j], a[j + 1]);

                flag = true;

            }

        }

        if (!flag) break; // 优化：无交换即有序

    }

}
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void selectionSort(vector<int>& a) {

    int n = a.size();

    for (int i = 0; i < n - 1; ++i) {

        int minIdx = i;

        for (int j = i + 1; j < n; ++j) {

            if (a[j] < a[minIdx]) minIdx = j;

        }

        swap(a[i], a[minIdx]);

    }

}
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4. 快速排序 (Quick Sort)  

优化点：

1. 随机基准：避免针对性数据导致 。

2. 三路划分思想：采用 i<=j  的双指针结构，能很好地处理大量重复元素的情况。

void insertionSort(vector<int>& a) {

    int n = a.size();

    for (int i = 1; i < n; ++i) {

        int key = a[i], j = i - 1;

        while (j >= 0 && a[j] > key) {

            a[j + 1] = a[j]; // 覆盖而非交换

            j--;

        }

        a[j + 1] = key;

    }

}
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// 调用方式：quick_sort(a, 0, n-1);

void quickSort(vector<int>& a, int l, int r) {

    if (l >= r) return;

    int i = l, j = r;

    int x = a[l + rand() % (r - l + 1)]; // 优化：随机选基准

    

    while (i <= j) {

        while (a[i] < x) i++;

        while (a[j] > x) j--;

        if (i <= j) swap(a[i++], a[j--]);

    }

    

    quickSort(a, l, j);

    quickSort(a, i, r);

}
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void quicksort(int q[], int l, int r){

    if(l>=r) return;

    int x = q[l], i = l - 1, j = r + 1; //此处-1和+1都是为了后面do while简洁

    while(i < j){

        do i++; while (q[i] < x);

        do j--; while (q[j] > x);

        if(i<j) swap(q[i],q[j]);

    }

    quicksort(q,l,j);//取j时前面不能是x = q[r]

    quicksort(q,j+1,r);

}
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5. 归并排序 (Merge Sort) —— 求逆序对常用  

优化点：使用全局辅助数组 tmp，避免递归中频繁 new/vector  申请内存导致的 TLE（超时）。

6. 堆排序 (Heap Sort)  

优化点：基于 0 索引的数组建堆，无需额外空间。 down  函数用于下沉维护堆性质。

const int N = 1e5 + 10; // 根据题目调整大小

int tmp[N]; 

// 调用方式：mergeSort(a, 0, n-1);

void mergeSort(vector<int>& a, int l, int r) {

    if (l >= r) return;

    int mid = l + (r - l) / 2;

    mergeSort(a, l, mid);

    mergeSort(a, mid + 1, r);

    

    int i = l, j = mid + 1, k = 0;

    while (i <= mid && j <= r)

        if (a[i] <= a[j]) tmp[k++] = a[i++];

        else tmp[k++] = a[j++]; // 此时可统计逆序对

        

    while (i <= mid) tmp[k++] = a[i++];

    while (j <= r) tmp[k++] = a[j++];

    

    for (int p = 0; p < k; ++p) a[l + p] = tmp[p];

}
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// 下沉维护，n是堆的大小，i是当前节点

void down(vector<int>& a, int n, int i) {

    int t = i; // t记录最大值的下标

    if (2 * i + 1 < n && a[2 * i + 1] > a[t]) t = 2 * i + 1;

    if (2 * i + 2 < n && a[2 * i + 2] > a[t]) t = 2 * i + 2;

    if (t != i) {

        swap(a[i], a[t]);

        down(a, n, t);

    }

}

void heapSort(vector<int>& a) {

    int n = a.size();

    // 1. 建堆：从最后一个非叶子节点开始

    for (int i = n / 2 - 1; i >= 0; --i) 

        down(a, n, i);

        

    // 2. 排序：把堆顶(最大值)换到末尾，再调整堆

    for (int i = n - 1; i > 0; --i) {

        swap(a[0], a[i]);

        down(a, i, 0); // 注意：堆大小变成了 i

    }
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矩阵相乘  
把 A,B 分成 4 个小块

但不是直接做 8 次小矩阵乘法，而是构造 7 个中间矩阵 P1..P7：

然后用加减法拼出 C：

同时找最大值和最小值  
思路：

1. 把数组拆成两半 L1 和 L2；

2. 分别在 L1 和 L2 中递归地求出 (min1, max1)、(min2, max2)；

3. 最终答案 =

全局最小 = min(min1, min2)

全局最大 = max(max1, max2)

多数问题  
要找出“出现次数超过 n/2 的元素”，如果存在的话。（分治不如直接哈希计数）

如果整个数组有一个多数元素 x，
那么在左半 A[1..n/2] 或右半 A[n/2+1..n] 中，
至少有一半会把 x 视为“各自的多数元素”（或者是候选）。

}23

P1 = (A11+A22)(B11+B22)

P2 = (A11+A22)B11

P3 = A11(B11−B22)

P4 = A22(−B11+B22)

P5 = (A11+A12)B22

P6 = (−A11+A21)(B11+B12)

P7 = (A12−A22)(B21+B22)
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C11 = P1 + P4 − P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 − P2 + P6
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MaxMin(L):

  if 长度为 1 或 2：

      直接比较，最多一次比较就能得到 min 和 max

  else:

      把 L 分成 L1, L2

      (min1, max1) = MaxMin(L1)

      (min2, max2) = MaxMin(L2)

      return (min(min1,min2), max(max1,max2))
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直观解释：

1. 左半递归求一个候选 m1，右半求一个候选 m2；

2. 真正的多数元素如果存在，很可能就是 m1 或 m2；

3. 最后只要再扫一遍数组，验证这两个候选的真实出现次数就行。

斐波那契  

通项公式：

顺序统计量  

Majority(A[1..n]):

  if n == 1:

    return A[1]

  m1 = Majority(A[1..n/2])

  m2 = Majority(A[n/2+1..n])

  在整个 A[1..n] 里统计 m1、m2 的出现次数

  如果其中某个出现次数 > n/2：

       返回它是多数

  否则：

       返回“没有多数”
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F[2] = F[1] = 1;

for(i: 3 → n)

    F[i] = F[i-1] + F[i-2];

1

2

3

F(n) = (1/√5) * ( ((1+√5)/2)^n − ((1−√5)/2)^n )1

|F(n+1)|   |1 1| |F(n)  |

|F(n)  | = |1 0| |F(n-1)|

1

2

// 9.2

int random_partition(std::vector<int>& a,int p,int r)

{

    int ra=rand()%(r+1-p)+p;

    std::swap(a[ra],a[r]);

    int x=a[r];

    int i=p-1;

    for(int j=p;j<r;j++)

        // 目前是从小到大

        if(a[j]<=x)

            std::swap(a[++i],a[j]);

    std::swap(a[i+1],a[r]);

    return i+1;

}

// a中从p到r、（均包含）的第i顺序统计量
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int random_select(std::vector<int>& a,int p,int r,int i) // 选择第 i 小的元素

{

    if(p==r)

        return a[p];

    int q=random_partition(a,p,r);

    int k=q-p+1;

    if(i==k)

        return a[q];

    else if(i<k)

        return random_select(a,p,q-1,i);

    else 

        return random_select(a,q+1,r,i-k);

}

// 同时返回最大和最小值（输入的max和min变量里）

void simu_min_max(const std::vector<int>& a,

                  int& min,int& max)

{

    int begin_index=1;

    if(a.size()%2==1)

    {

        min=max=a[0];

    }

    else

    {

        min=std::min(a[0],a[1]);

        max=std::max(a[0],a[1]);

        begin_index=2;

 

    }

    for(int i=begin_index;i<a.size();i+=2)

    {

        if(a[i]>a[i+1])

        {

            max=std::max(max,a[i]);

            min=std::min(min,a[i+1]);

        }

        else

        {

            max=std::max(max,a[i+1]);

            min=std::min(min,a[i]);

        }

 

    }

}

/* 数组版 */

int random_partition(int a[],int p,int r)

{

    int ra=rand()%(r+1-p)+p;

    std::swap(a[ra],a[r]);

    int x=a[r];
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快速幂  

 

    int i=p-1;

    for(int j=p;j<r;j++)

        if(a[j]<=x)

            std::swap(a[++i],a[j]);

    std::swap(a[i+1],a[r]);

    return i+1;

}

int random_select(int a[],int p,int r,int i)

{

    if(p==r)

        return a[p];

    int q=random_partition(a,p,r);

    int k=q-p+1;

    if(i==k)

        return a[q];

    else if(i<k)

        return random_select(a,p,q-1,i);

    else 

        return random_select(a,q+1,r,i-k);

}

/* 使用参考 */

#include"chapter9.h"

void main()

{

    int array[]={1,2,3,4,5,6,7,8,9,0};

    std::vector<int> a(array,

        array+sizeof(array)/sizeof(int));

    //int rt=random_select(a,0,9,7);

    //std::cout<<rt<<std::endl;

    int min=0;int max=0;

    simu_min_max(a,min,max);

    std::cout<<"the min="<<min<<

        " ,the max="<<max<<std::endl;

}
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long long binpow(long long a, long long b) { //

  long long res = 1;

  while (b > 0) {

    if (b & 1) res = (res * a);

    a = (a * a);

    b >>= 1;

  }

  return res;

}
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五、动态规划  
装配线调度 ALS  

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

/**

 * 阶段1：计算最短路径 (DP核心)

 * 参数：

 * n: 站点数 | a1,a2: 站处理时间 | t1,t2: 切换耗时

 * e1,e2: 入口耗时 | x1,x2: 出口耗时

 * l1,l2: [输出参数] 用于记录路径，需在外部resize(n)

 * 返回值：pair<int, int> -> {最短总时间, 最后出来的线(1或2)}

 */

pair<int, int> getFastest(int n, const vector<int>& a1, const vector<int>& a2,

                          const vector<int>& t1, const vector<int>& t2,

                          int e1, int e2, int x1, int x2,

                          vector<int>& l1, vector<int>& l2) {

    // dp数组：f1[i]表示到达线1第i站的最短时间

    vector<int> f1(n), f2(n);

    // 初始化第0站

    f1[0] = e1 + a1[0];

    f2[0] = e2 + a2[0];

    // 状态转移 (从第1站开始遍历到n-1)

    for (int j = 1; j < n; j++) {

        // 计算线1：从线1直接来 vs 从线2切过来

        if (f1[j-1] + a1[j] <= f2[j-1] + t2[j-1] + a1[j]) {

            f1[j] = f1[j-1] + a1[j];

            l1[j] = 1;

        } else {

            f1[j] = f2[j-1] + t2[j-1] + a1[j];

            l1[j] = 2;

        }

        // 计算线2：从线2直接来 vs 从线1切过来

        if (f2[j-1] + a2[j] <= f1[j-1] + t1[j-1] + a2[j]) {

            f2[j] = f2[j-1] + a2[j];

            l2[j] = 2;

        } else {

            f2[j] = f1[j-1] + t1[j-1] + a2[j];

            l2[j] = 1;

        }

    }

    // 计算加上离开时间后的总最优

    if (f1[n-1] + x1 <= f2[n-1] + x2) 
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        return {f1[n-1] + x1, 1}; // 最优线是1

    else 

        return {f2[n-1] + x2, 2}; // 最优线是2

}

/**

 * 阶段2：打印路径

 * 参数：

 * l1, l2: getFastest计算出的路径表

 * lastL : 最后出来的线 (getFastest返回值的second)

 * n     : 站点数

 */

void printPath(int n, const vector<int>& l1, const vector<int>& l2, int lastL) {

    int i = lastL;

    cout << "Station " << n << ", Line " << i << endl; // 打印最后一站

    

    // 倒序回溯：从 n-1 倒推到 1 (对应下标 n-1 到 1)

    for (int j = n - 1; j >= 1; j--) {

        // 如果当前在线1，查l1；在线2，查l2

        i = (i == 1) ? l1[j] : l2[j]; 

        cout << "Station " << j << ", Line " << i << endl;

    }

}

int main() {

    // 1. 准备输入数据

    int n = 6;

    int e1 = 2, e2 = 4;

    int x1 = 3, x2 = 2;

    

    // 处理时间 (大小为 n)

    vector<int> a1 = {7, 9, 3, 4, 8, 4};

    vector<int> a2 = {8, 5, 6, 4, 5, 7};

    

    // 切换时间 (大小为 n-1)

    vector<int> t1 = {2, 3, 1, 3, 4};

    vector<int> t2 = {2, 1, 2, 2, 1};

    // 2. 准备输出容器 (必须resize到n)

    vector<int> l1(n), l2(n);

    // 3. 调用核心算法

    pair<int, int> res = getFastest(n, a1, a2, t1, t2, e1, e2, x1, x2, l1, l2);

    

    // 4. 输出结果

    cout << "Min Time: " << res.first << endl; // 输出最短时间

    printPath(n, l1, l2, res.second);          // 打印具体路线

    return 0;

}
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钢管切割问题  

#include <vector>

#include <iostream>

#include <algorithm>

#include <climits> // 用于 INT_MIN

using namespace std;

// 1. 核心DP算法: 计算最大收益并记录方案

// 返回 pair: first是收益数组r, second是第一刀位置数组s

pair<vector<int>, vector<int>> extCutRod(const vector<int>& p, int n) {

    vector<int> r(n + 1); // 收益表

    vector<int> s(n + 1); // 方案表

    r[0] = 0;

    for (int j = 1; j <= n; ++j) {

        int q = INT_MIN; // 初始化为负无穷

        for (int i = 1; i <= j; ++i) { // i 代表尝试切下的这一段长度

            // 状态转移: 当前一段价格 p[i] + 剩余部分最优解 r[j-i]

            if (q < p[i] + r[j - i]) {

                q = p[i] + r[j - i];

                s[j] = i; // 记录造成最优解的第一刀长度

            }

        }

        r[j] = q;

    }

    return {r, s};

}

// 2. 打印方案函数

// 逻辑: 不断输出当前s[n], 然后将n减去已输出的长度, 直到n为0

void printSol(const vector<int>& p, int n) {

    // 调用DP函数获取表

    pair<vector<int>, vector<int>> res = extCutRod(p, n);

    vector<int> r = res.first;

    vector<int> s = res.second;

    cout << "最大收益: " << r[n] << endl;

    cout << "切割方案: ";

    while (n > 0) {

        cout << s[n] << " "; // 打印这一刀的长度

        n = n - s[n];        // 剩余长度

    }

    cout << endl;

}

int main() {

    // 价格表：p[1]=1, p[2]=5, p[3]=8 ... 

    // p[0] 设为0占位，方便下标对应

    vector<int> p = {0, 1, 5, 8, 9, 10, 17, 17, 20, 24, 30}; 

    int n = 10; // 钢管总长
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矩阵连乘 MCM  

    printSol(p, n);

    return 0;

}
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#include <iostream>

#include <vector>

#include <climits>

#include <algorithm>

using namespace std;

/*

 * 功能：矩阵连乘最小运算次数 (MCM)

 * 参数：

 *   p: 矩阵维度数组。共有 n = p.size()-1 个矩阵。

 *      第 i 个矩阵 A_i 的维度为 p[i-1] x p[i]。

 *      例如: A1(30x35), A2(35x15), A3(15x5) -> p = {30, 35, 15, 5}

 *   s: 记录分割点的二维数组 (引用传递，函数内会自动调整大小)

 * 返回值：最小标量乘法次数

 * 时间复杂度: O(n^3), 空间复杂度: O(n^2)

 */

long long mcm_solve(const vector<int>& p, vector<vector<int>>& s) {

    int n = p.size() - 1;

    // m[i][j] 存储 Ai..Aj 的最小代价

    // 为了防止溢出，使用 long long

    vector<vector<long long>> m(n + 1, vector<long long>(n + 1, 0));

    s.assign(n + 1, vector<int>(n + 1, 0));

    // l 是链的长度，从 2 开始到 n

    for (int l = 2; l <= n; l++) {

        for (int i = 1; i <= n - l + 1; i++) {

            int j = i + l - 1;

            m[i][j] = LLONG_MAX; // 初始化为无穷大

            

            // k 是分割点，将 Ai..Aj 分割为 Ai..Ak 和 Ak+1..Aj

            for (int k = i; k < j; k++) {

                // 代价 = 左边代价 + 右边代价 + 合并代价

                long long q = m[i][k] + m[k + 1][j] + (long long)p[i - 1] * p[k] * 

p[j];

                if (q < m[i][j]) {

                    m[i][j] = q;

                    s[i][j] = k; // 记录最优分割点

                }

            }

        }
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最优二叉搜索树 OBST  

    }

    return m[1][n];

}

/*

 * 功能：根据 s 表打印最优括号方案

 * 参数：s (由 mcm_solve 生成), i (起点), j (终点)

 * 调用方式: print_parens(s, 1, n); cout << endl;

 */

void print_parens(const vector<vector<int>>& s, int i, int j) {

    if (i == j) {

        cout << "A" << i;

    } else {

        cout << "(";

        print_parens(s, i, s[i][j]);

        print_parens(s, s[i][j] + 1, j);

        cout << ")";

    }

}

// --------------------------------------------------------

// 使用案例 (考试时只需抄写上面的函数，下面是主函数示例)

int main() {

    // 示例：A1(30x35), A2(35x15), A3(15x5), A4(5x10), A5(10x20), A6(20x25)

    vector<int> p = {30, 35, 15, 5, 10, 20, 25};

    vector<vector<int>> s;

    long long cost = mcm_solve(p, s);

    cout << "Minimum Cost: " << cost << endl; // 应输出 15125

    cout << "Optimal Parenthesization: ";

    print_parens(s, 1, p.size() - 1);         // 应输出 ((A1(A2A3))((A4A5)A6))

    cout << endl;

    return 0;

}
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#include <iostream>

#include <cfloat> // 用于 DBL_MAX

using namespace std;

const int MAX = 205; // 根据题目数据范围调整，防止越界

double e[MAX][MAX];  // e[i][j]: 搜索最优期望代价

double w[MAX][MAX];  // w[i][j]: 概率总权重

int r[MAX][MAX];     // r[i][j]: 区间[i,j]的最优根节点下标

/**

 * OBST 算法 (Knuth 优化版 O(n^2))
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 * @param n 关键字个数

 * @param p 成功概率数组，下标从 1 到 n

 * @param q 失败概率数组，下标从 0 到 n

 * 说明：计算完成后，e[1][n] 为最小代价，r[1][n] 为整棵树的根

 */

void obst(int n, double p[], double q[]) {

    // 1. 初始化空区间 (对应伪代码第一个循环)

    for (int i = 1; i <= n + 1; i++) {

        e[i][i - 1] = q[i - 1];

        w[i][i - 1] = q[i - 1];

    }

    // 2. l 表示区间长度 (对应伪代码第二个循环)

    for (int l = 1; l <= n; l++) {

        // i 为区间起点

        for (int i = 1; i <= n - l + 1; i++) {

            int j = i + l - 1; // j 为区间终点

            e[i][j] = DBL_MAX; // 初始化无穷大

            

            // O(1) 更新权重 w

            w[i][j] = w[i][j - 1] + p[j] + q[j];

            // Knuth 优化核心：缩小根 k 的枚举范围

            // 原始范围: [i, j]

            // 优化范围: [r[i][j-1], r[i+1][j]]

            // 边界处理: 当 l=1 时，范围就是 [i, i]

            int start = (l == 1) ? i : r[i][j - 1];

            int end   = (l == 1) ? j : r[i + 1][j];

            // 尝试可能的根 k

            for (int k = start; k <= end; k++) {

                // 代价计算公式: 左子树代价 + 右子树代价 + 当前权重

                double t = e[i][k - 1] + e[k + 1][j] + w[i][j];

                if (t < e[i][j]) {

                    e[i][j] = t;

                    r[i][j] = k; // 记录最优根

                }

            }

        }

    }

}

/**

 * 递归打印 OBST 结构

 * @param i  当前子树的左边界

 * @param j  当前子树的右边界

 * @param p  父节点编号 (parent)，初始调用传 0

 * @param type 类型：0=根节点, 1=左孩子, 2=右孩子

 * 注意：依赖全局变量 r[MAX][MAX]

 */

void print_tree(int i, int j, int p, int type) {

    // 1. 递归终止条件：如果是空树（遇到虚拟键 d）

    if (i > j) {
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最长上升子序列  

        // 如果题目要求输出虚拟键 d_k，可以在这里加上：

        // int d_index = j; // 或者是 i-1

        // if (type==1) cout << "d" << d_index << " is Left Child of k" << p << endl;

        // else cout << "d" << d_index << " is Right Child of k" << p << endl;

        return;

    }

    // 2. 获取当前子树的根

    int k = r[i][j];

    // 3. 打印当前节点信息

    if (type == 0) {

        cout << "k" << k << " is Root" << endl;

    } else if (type == 1) {

        cout << "k" << k << " is Left Child of k" << p << endl;

    } else {

        cout << "k" << k << " is Right Child of k" << p << endl;

    }

    // 4. 递归处理左右子树

    print_tree(i, k - 1, k, 1); // 左子树 (type=1)

    print_tree(k + 1, j, k, 2); // 右子树 (type=2)

}

int main() {

    // 示例数据：n=5

    // p 从下标 1 开始，p[0] 占位

    // q 从下标 0 开始

    int n = 5;

    double p[] = {0.0, 0.15, 0.10, 0.05, 0.10, 0.20}; 

    double q[] = {0.05, 0.10, 0.05, 0.05, 0.05, 0.10};

    // 调用板子

    obst(n, p, q);

    // 输出结果

    cout << "Minimum Cost: " << e[1][n] << endl;

    cout << "Root of Tree: " << r[1][n] << endl;

    cout << "The Optimal Binary Search Tree Structure:" << endl;

    

    // 初始调用：范围 1 到 n，父节点设为 0（无），类型设为 0（根）

    print_tree(1, n, 0, 0);

    

    return 0;

}
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最长公共子序列  

#include<iostream>

using namespace std;

int main()

{

    int n;

    cin >> n;

    int a[n],dp[n];

    for(int i = 0;i<n;i++)

    {

        cin >> a[i];

        dp[i] = 1;//自身一定是一个长度的序列 

    }

    for(int i = 1;i<n;i++)

    {

        for(int j = 0;j<i;j++)

        {

            if(a[i] > a[j])//因为是上升，所以需要只有比前面的值大才可能形成最长上升子序列 

            {

                if(dp[i] < dp[j]+1) dp[i] = dp[j] + 1;//记录i处最长的上升序列长度

                //即前面的序列长度最大长度+1即是i处的最大长度

            }

        }

    }

    int max = dp[0];//不一定最后一个是最长的，因此需要获取最大值 

    for(int i = 1;i<n;i++)

    {

        if(max < dp[i]) max = dp[i];

    }

    cout << max << '\n';

    return 0;

}
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#include <iostream>

#include <vector>

#include <string>

#include <algorithm> // 必须包含: max, reverse

using namespace std;

/*

 * [函数1: 核心DP计算]

 * 功能: 生成LCS的DP表格

 * 参数: a, b (待比较的两个字符串)

 * 返回: 二维vector表，dp[n][m]即为LCS长度

 * 复杂度: 时间 O(NM), 空间 O(NM)

 */

vector<vector<int>> get_dp(const string& a, const string& b) {

    int n = a.size();

    int m = b.size();
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    // 初始化 (n+1)*(m+1) 的二维数组，全为0

    vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));

    for (int i = 1; i <= n; ++i) {

        for (int j = 1; j <= m; ++j) {

            if (a[i - 1] == b[j - 1]) {

                dp[i][j] = dp[i - 1][j - 1] + 1;

            } else {

                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

            }

        }

    }

    return dp;

}

/*

 * [函数2: 恢复LCS字符串]

 * 功能: 调用函数1获取DP表，倒推还原出最长公共子序列

 * 参数: a, b (必须与传给函数1的一致)

 * 返回: LCS 具体字符串

 */

string get_lcs(const string& a, const string& b) {

    // 1. 调用第一个函数，获取“地图” (DP表)

    vector<vector<int>> dp = get_dp(a, b);

    

    // 2. 准备回溯

    string res;

    int i = a.size();

    int j = b.size();

    // 3. 根据“地图”倒着走

    while (i > 0 && j > 0) {

        if (a[i - 1] == b[j - 1]) {

            // 只有字符相等时，才来自于左上角，且该字符属于LCS

            res += a[i - 1];

            i--; j--;

        } else {

            // 字符不等，来源于数值较大的方向（左或上）

            if (dp[i - 1][j] > dp[i][j - 1]) i--;

            else j--;

        }

    }

    // 4. 倒推的结果是反的，需要翻转回来

    reverse(res.begin(), res.end());

    return res;

}

// =================== 考试使用案例 ===================

int main() {

    // 优化输入输出效率 (考试必备)

    ios::sync_with_stdio(false);

    cin.tie(0);
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最长公共子串  
子串：需要连续的，与子序列不同

    string s1 = "ABCBDAB";

    string s2 = "BDCABA";

    // 场景 A: 只需要长度

    // 直接调用第一个函数，取右下角的值

    vector<vector<int>> table = get_dp(s1, s2);

    cout << "LCS Length: " << table[s1.size()][s2.size()] << endl; 

    // 场景 B: 需要具体字符串

    // 调用第二个函数 (它内部会自动调用第一个)

    string lcs_str = get_lcs(s1, s2);

    cout << "LCS String: " << lcs_str << endl;

    return 0;

}
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#include <iostream>

#include <string>

#include <vector>

#include <cstring>

#include <algorithm>

using namespace std;

// 全局变量方便抄写，防止栈溢出

// MAXN 根据题目数据范围修改，例如 1005 或 5005

const int MAXN = 1005; 

int f[MAXN][MAXN]; // DP数组

int mx = 0;        // 最长公共子串的长度

int endPos = 0;    // 最长子串在字符串 a 中的结束位置(1-based)

/*

 * 函数名: getLCS

 * 功能: 计算两个字符串的最长公共子串长度及位置

 * 参数: string a, string b - 需要比较的两个字符串

 * 注意: f[i][j] 表示以 a[i-1] 和 b[j-1] 结尾的最长公共子串长度

 */

void getLCS(string a, string b) {

    int n = a.size();

    int m = b.size();

    

    // 初始化 (如果是多组数据测试，必须加 memset)

    mx = 0; 

    memset(f, 0, sizeof(f));

    for (int i = 1; i <= n; i++) {

        for (int j = 1; j <= m; j++) {
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            if (a[i - 1] == b[j - 1]) {

                f[i][j] = f[i - 1][j - 1] + 1;

                // 更新最大值和结束位置

                if (f[i][j] > mx) {

                    mx = f[i][j];

                    endPos = i; // 记录在 a 中的位置(1-based)

                }

            } else {

                f[i][j] = 0; // 子串必须连续，不匹配则断开

            }

        }

    }

}

/*

 * 函数名: printLCS

 * 功能: 打印最长公共子串的内容

 * 参数: string a - 原始字符串 a (用于提取子串)

 * 说明: 必须先调用 getLCS 计算出 mx 和 endPos

 */

void printLCS(string a) {

    if (mx == 0) {

        cout << "No Common Substring" << endl;

        return;

    }

    // substr(起始下标, 长度)

    // endPos 是 1-based，转回 0-based 需要 -1，再减去长度 mx 还没减完，

    // 起始位置 = (endPos - 1) - mx + 1 = endPos - mx

    cout << a.substr(endPos - mx, mx) << endl;

}

// --- 使用案例 ---

/*

int main() {

    string s1 = "acbcbcef";

    string s2 = "abcbced";

    

    getLCS(s1, s2);

    

    cout << "最大长度: " << mx << endl; // 输出: 5

    cout << "公共子串: ";

    printLCS(s1); // 输出: bcbce

    return 0;

}

*/
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01背包问题  
给定背包总体积，给N个物品，每个物品有一个体积和重量，只能用一次或不用，问最大重量是多少？
定义函数 f(i,j)代表：仅包含前 i个物品且总体积小于等于 j的背包的最大价值是多少，故最终需要的结果是

f(N,V)。

 

完全背包问题  
完全背包的区别是每个物品可以选0-无数次，同样求最大总重量。
思路： 此时DP数组的含义不变。在每次选择 f(i,j)时，同样也变成了k+1种选择（选择0,1,2,…,k个第i个元

素，k由循环判断当前的j能否大于或等于k个i的价值，即 k*wi <= j），循环判断出其中的最大值，就可以算出

新的 f[i,j]。

因为循环的嵌套是从i: 1-N, j: i-V计算的，所以在计算 f[i,j]时， f[i, j-v]必然被算过（v代表i的体积，w代表i的

重量）。 f[i,j]与 f[i, j-v]之间存在如下的联系：

那么可以看出两者的关系为

#include <iostream>

#include <algorithm>

using namespace std;

const int N = 1010;

int n, m;

int v[N], w[N];

int f[N][N];

int main(){

    cin >> n >> m;

    for(int i=1; i <= n; i++) cin >> v[i] >> w[i];

    for(int i=1; i <= n; i++)｛

        for(int j = 1; j <= m; j++){

            f[i][j] = f[i-1][j];

            if(j >= v[i]) f[i][j] = max(f[i][j], f[i-1][j-v[i]] + w[i]);

        }

        // 一维数组

        //for(int j = m; j >= 1; j--){

            //if(j >= v[i]) f[j] = max(f[j], f[j-v[i]] + w[i]);

        //}

    ｝

    cout << f[n][m] << endl;

}
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则此时减少了一层循环，提高运行效率。

 

多重背包问题  
这个算法是 多重背包问题的二进制拆分优化，它将第  种物品的  个拆分成  个捆绑包，
然后转化为 0/1 背包问题求解。

#include <iostream>

#include <algorithm>

using namespace std;

const int N = 1010;

int n, m;

int v[N], w[N];

int f[N];

int main(){

    cin >> n >> m;

    for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];

    for(int i = 1; i <= n; i ++){

        for(int j = 0; j <= m; j++){

            // 改为一维

            // f[i][j] = f[i - 1][j];

            // if (j >= v[i]) f[i][j] = max(f[i][j], f[i][j-v[i]] + w[i]);

            if (j >= v[i]) f[j] = max(f[j], f[j-v[i]] + w[i]);

        }

    }

    cout << f[n][m] << endl;

    return 0;

}
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/* 

   多重背包问题 - 二进制拆分优化 

   输入: n(物品种类), m(背包容量)

   接下来n行: a(体积), b(价值), s(数量)

   

   原理: 将多重背包转化为 0/1 背包

   时间复杂度: O(m * Σlog(s_i))

*/

#include <iostream>

#include <algorithm>

using namespace std;

// 数据范围预估：

// 假设 N=1000, log(S)≈12 (S=2000), 

// 拆分后的物品总数约为 12000 左右，这里开大一点防止越界

const int MAX_N = 25000; 

const int MAX_M = 2010;  // 背包容量

int n, m;

int v[MAX_N]; // 存储拆分后的体积 (Volume)

int w[MAX_N]; // 存储拆分后的价值 (Worth/Weight)

int f[MAX_M]; // DP数组

int main()

{

    cin >> n >> m;
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分组背包问题  
物品被分成若干组，每组中的物品只能选择一个。

    int cnt = 0; // 记录拆分后的新物品总数

    for (int i = 1; i <= n; i ++ )

    {

        int a, b, s;

        cin >> a >> b >> s; // a:单件体积, b:单件价值, s:数量

        

        int k = 1;

        while (k <= s)

        {

            cnt ++ ;

            v[cnt] = a * k;

            w[cnt] = b * k;

            s -= k;

            k *= 2;

        }

        if (s > 0)

        {

            cnt ++ ;

            v[cnt] = a * s;

            w[cnt] = b * s;

        }

    }

    n = cnt; // 更新物品总数为拆分后的数量

    // 下面是标准的 0/1 背包模板

    for (int i = 1; i <= n; i ++ )

        for (int j = m; j >= v[i]; j -- )

            f[j] = max(f[j], f[j - v[i]] + w[i]);

    cout << f[m] << endl;

    return 0;

}

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

#include <iostream>  

#include <algorithm>  

using namespace std;  

typedef long long ll;  

const int MAX = 1005;  

struct {  

    int cnt;  

    ll ID[MAX];  

} group[MAX]; //用一个结构体来存储每一组的物品编号  

ll dp[MAX];     // 最大价值  
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石子合并（区间DP）  
区间DP的核心是：大区间由小区间合并而来。 

循环顺序：先枚举长度 len，再枚举左端点 i，最后枚举分割点 k。

ll val[MAX];    // 每个物品的价值  

ll weight[MAX]; // 每个物品的重量  

  

ll group_bag(int cap, int max_group);  

  

int main() {  

    int n, W;  

    cin >> W >> n;  //  n表示物品数量，W表示背包容量  

    int a, b, k, max_group = 0;  

    for (int i = 1; i <= n; i++) {  

        cin >> a >> b >> k; // a重量  b价值  k物品所在的组号  

        weight[i] = a;  

        val[i] = b;  

        group[k].ID[group[k].cnt++] = i;  

        max_group = max(max_group, k);  

    }  

    cout << group_bag(W, max_group);  

    return 0;  

}  

  

ll group_bag(int W, int max_group) {  

    for (int i = 0; i <= max_group; i++) // 第一层循环，遍历所有组  

        for (ll j = W; j >= 0; j--) // 第二层循环，从背包容量W到0倒序遍历  

            for (int k = 0; k < group[i].cnt; k++) // 第三层循环，遍历当前组内的所有物品  

                if (j >= weight[group[i].ID[k]]) // 如果当前物品可以放入背包  

                    // 更新dp数组，选择放入或不放入当前物品，取最大值  

                    dp[j] = max(dp[j],dp[j - weight[group[i].ID[k]]] + 

val[group[i].ID[k]]);  

    return dp[W];  

}
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/*

 * [区间 DP - 通用思考骨架]

 * 适用：石子合并、括号匹配、能量项链、回文子串等。

 * 核心思想：从小区间向大区间递推。

 * 状态：dp[i][j] 表示区间 [i, j] 的最优解。

 * 复杂度：O(N^3)

 *

 * 参数说明：

 *   n: 元素个数

 *   dp[N][N]: 状态数组，注意初始化 (求Min初始化为INF, 求Max初始化为0)

 *   w(i, j): 合并区间 [i, j] 产生的额外代价 (如前缀和计算)

 */

#include <algorithm>
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#include <cstring>

using namespace std;

const int INF = 0x3f3f3f3f;

int dp[505][505]; // 根据题目数据范围调整

int s[505];       // 前缀和数组，用于快速计算区间和

void solve_interval(int n, int a[]) {

    // 1. 初始化

    // 如果求最大值，memset(dp, 0); 如果求最小值，memset(dp, 0x3f);

    // 基础状态：长度为1的区间代价通常为0

    for (int i = 1; i <= n; i++) {

        dp[i][i] = 0; 

        s[i] = s[i-1] + a[i]; // 预处理前缀和

    }

    // 2. 循环主体 (必须背诵这个顺序)

    // 第一层：枚举区间长度 (从2开始，直到n)

    for (int len = 2; len <= n; len++) {

        // 第二层：枚举左端点 i

        for (int i = 1; i + len - 1 <= n; i++) {

            int j = i + len - 1; // 计算右端点 j

            

            dp[i][j] = INF; // 初始化当前大区间，准备更新

            // 第三层：枚举分割点 k (区间 [i, j] 被分成 [i, k] 和 [k+1, j])

            // 注意 k 的范围：[i, j-1]

            for (int k = i; k < j; k++) {

                // 状态转移方程：左边最优 + 右边最优 + 合并代价

                // cost = s[j] - s[i-1]; // 例如石子合并的代价是区间和

                int cost = s[j] - s[i-1];

                dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + cost);

            }

        }

    }

    // 答案通常是 dp[1][n]

}
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六、贪心算法  
最多活动数（区间调度）  

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

// 定义活动结构体：s为开始时间，f为结束时间

struct Act {

    int s, f; 

};

/**

 * 算法板子：区间调度/活动选择问题

 * 

 * @param a  活动列表 (vector<Act>)

 * @return   int 最多能参加的活动数量

 * 

 * 使用说明：

 * 1. 确保输入的区间格式为 [s, f)。即 f 是结束时刻，不包含 f 本身。

 *    (若题目定义包含结束时刻，即[s, f]，则判定条件改为 x.s > last)

 * 2. 核心逻辑：按结束时间 f 升序排序，遍历选择不重叠的活动。

 * 3. 复杂度：时间 O(N log N) (排序耗时)，空间 O(1) (不含输入存储)。

 */

int maxActs(vector<Act>& a) {

    if (a.empty()) return 0;

    // 1. 按结束时间从小到大排序

    //    lambda表达式写法，方便抄写。如果f相同，s的顺序不影响最大数量。

    sort(a.begin(), a.end(), [](const Act& x, const Act& y) {

        return x.f < y.f;

    });

    int cnt = 0;           // 计数器

    int last = -2e9;       // 记录上一个选中活动的结束时间，初始化为负无穷

    // 2. 遍历并选择

    for (auto& x : a) {

        // 如果当前活动开始时间 >= 上个活动结束时间，说明相容

        if (x.s >= last) {

            cnt++;

            last = x.f;    // 更新结束时间

        }

    }

    return cnt;

}

// ================= 使用案例 =================
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Huffman编码  
AI版

int main() {

    // 示例输入：5个活动

    // [1, 4), [3, 5), [0, 6), [5, 7), [3, 9), [5, 9), [6, 10), [8, 11), [8, 12), [2, 

14), [12, 16)

    // 这里简单构造几个数据演示

    vector<Act> acts = {

        {1, 4}, {3, 5}, {0, 6}, {5, 7}, 

        {3, 9}, {5, 9}, {6, 10}, {8, 11}, 

        {8, 12}, {2, 14}, {12, 16}

    };

    int result = maxActs(acts);

    cout << "最大兼容活动数: " << result << endl; 

    // 对于上述标准数据（算法导论例题），正确输出应为 4

    // 选出的活动可能是: [1,4), [5,7), [8,11), [12,16)

    return 0;

}
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#include <bits/stdc++.h>

using namespace std;

/*

 * 参数说明:

 *   cnt: map<char, int> 存储字符及其出现频率 (例如 {'a':5, 'b':9})

 * 返回值:

 *   map<char, string> 存储字符对应的哈夫曼编码 (例如 {'a':"110", 'b':"10"})

 * 复杂度:

 *   时间 O(N log N), 空间 O(N)

 */

// 树节点结构体

struct Node {

    char c;         // 字符

    int w;          // 权值(频率)

    Node *l, *r;    // 左右子树

    Node(char v, int f) : c(v), w(f), l(0), r(0) {}

};

// 优先队列比较器 (小根堆)

struct Cmp {

    bool operator()(Node* a, Node* b) {

        return a->w > b->w; // 频率小的优先级高

    }

};
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// DFS 遍历生成编码

void dfs(Node* u, string code, map<char, string> &res) {

    if (!u) return;

    // 如果是叶子节点，记录编码

    if (!u->l && !u->r) {

        res[u->c] = code;

        return;

    }

    dfs(u->l, code + "0", res); // 左边为0

    dfs(u->r, code + "1", res); // 右边为1

}

// 主函数: 生成哈夫曼编码

map<char, string> huffman(map<char, int> &cnt) {

    priority_queue<Node*, vector<Node*>, Cmp> q;

    

    // 1. 初始化: 所有字符入队

    for (auto &p : cnt) q.push(new Node(p.first, p.second));

    

    // 2. 构建哈夫曼树: 合并 n-1 次

    while (q.size() > 1) {

        Node *x = q.top(); q.pop(); // 取最小

        Node *y = q.top(); q.pop(); // 取次小

        

        // 新节点权值为两者之和，内部节点字符通常设为空或特殊值

        Node *z = new Node('\0', x->w + y->w); 

        z->l = x; z->r = y;

        q.push(z);

    }

    

    // 3. 生成编码表

    map<char, string> codes;

    if (!q.empty()) dfs(q.top(), "", codes);

    

    return codes;

}

int main() {

    // 示例输入: "abacaba" 或直接给出频率

    // 频率: a:4, b:2, c:1

    map<char, int> freq;

    freq['a'] = 4;

    freq['b'] = 2;

    freq['c'] = 1;

    freq['d'] = 1; // 随便加点数据

    // 调用板子

    map<char, string> huffmanCodes = huffman(freq);

    // 输出结果

    cout << "Char | Code" << endl;

    for (auto &p : huffmanCodes) {

        cout << "  " << p.first << "  | " << p.second << endl;
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仅计算长度：

    }

    

    // 模拟计算 WPL (带权路径长度)

    int wpl = 0;

    for (auto &p : huffmanCodes) {

        wpl += freq[p.first] * p.second.length();

    }

    cout << "WPL: " << wpl << endl;

    return 0;

}
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#include <bits/stdc++.h>

using namespace std;

int a[300];

long long n = 0;

struct node{

    struct node *left;

    struct node *right;

    long long sum;

};

struct compare {

    bool operator()(node* a, node* b) const {

        return a->sum > b->sum;

    }

};

priority_queue<node*, vector<node*>, compare> que;

int main(){

    char x; n = 0;

    while(scanf("%c", &x)!=EOF){

        if (('A' <= x && x <= 'Z') || ('a' <= x && x <= 'z')){a[(int)x]++;n++;}

    }

    for(int i='A'; i<='Z';i++){

        if(a[i]==0) continue;

        struct node* aa = (struct node*)malloc(sizeof(struct node));

        aa->left = NULL; aa->right = NULL; aa->sum = a[i];

        que.push(aa);

    }

    for(int i='a'; i<='z';i++){

        if(a[i]==0) continue;

        struct node* aa = (struct node*)malloc(sizeof(struct node));

        aa->left = NULL; aa->right = NULL; aa->sum = a[i];

        que.push(aa);

    }

    if (que.size() == 1) {
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        printf("%lld\n", n);

        return 0;

    }

    long long ans = 0;

    while(que.size()>1){

        struct node* newnew = (struct node*)malloc(sizeof(struct node));

        long long all = 0;

        struct node* na = que.top(); que.pop();

        all += na->sum;

        newnew->left = na;

        na = que.top(); que.pop();

        all += na->sum;

        newnew->right = na;

        newnew->sum = all;

        ans += all;

        que.push(newnew);

    }

    cout << ans;

    return 0;

}
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七、图算法  
链式前向星  

用不了的情况：Floyd-Warshall 算法（多源最短路）

/*

 * 参数说明：

 * V_MAX: 最大点数

 * E_MAX: 最大边数 (注意：如果是无向图，E_MAX 需要开边数的2倍)

 * head[]: 存储每个点头部边的索引，初始化为-1

 * Edge结构体: to(终点), w(权值), next(下一条同起点的边)

 */

const int N = 10005;     // 最大点数 (根据题目改)

const int M = 20005;     // 最大边数 (无向图记得 * 2)

const int INF = 0x3f3f3f3f; // 无穷大 (约10亿，memset可用)

struct Edge{  

    int to, w, next; //终点，权值，前驱  

} e[E_MAX];  

int cnt_E = 0;  

int head[V_MAX]; //需要先初始化为-1    

void initList(int n){  

    memset(head, -1, sizeof(head));  

} 

//  加边函数 (无向图需要调用两遍)

void addEdge(int x, int y, int w) {

    e[cnt_E].to = y;

    e[cnt_E].w = w;

    e[cnt_E].next = head[x];

    head[x] = cnt_E++;

}

//  【核心】遍历模版：访问从 u 点出发的所有边

// 考试时直接套用这个 for 循环

void traverse(int u) {

    // i 代表边的索引

    for (int i = head[u]; i != -1; i = e[i].next) {

        int v = e[i].to;  // 这条边的终点

        int w = e[i].w;   // 这条边的权值

        

        // 在这里进行你的操作，例如：

        // if (!visited[v]) dfs(v);

        // if (dist[v] > dist[u] + w) ...

    }

}
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问题：如果有操作问你：“点 A 和 点 B 之间有直接相连的边吗？”

链式前向星：需要遍历 head[A]  的所有边，看有没有指向 B  的。复杂度是 。

邻接矩阵：直接看 if (g[A][B] != INF)。复杂度是 。

 

DFS 深度优先搜索  
适用场景： 连通性判断、找环、树的遍历、求子树大小。

// 仅当 N <= 500 时使用

int g[505][505]; 

// 初始化：自己到自己是0，其他是无穷大

// memset(g, 0x3f, sizeof(g));

// for(int i=1; i<=n; i++) g[i][i] = 0;

// 加边 u -> v 权值 w

// g[u][v] = min(g[u][v], w); // 防止重边，取最小
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/* for 链式前向星

 * DFS板子

 * vis[]: 标记数组，防止重复访问

 * u: 当前节点

 */

bool vis[N]; 

void dfs(int u) {

    vis[u] = true; // 标记当前点已访问

    

    // 遍历 u 的所有出边

    for (int i = head[u]; i != -1; i = e[i].next) {

        int v = e[i].to;

        int w = e[i].w; // 如果需要权值

        

        if (!vis[v]) {

            // 在这里可以处理父子关系，如: parent[v] = u;

            dfs(v); 

        }

    }

}
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bool is_visit[maxn];

void dfs_visit(int v) { // 深度优先搜索

    is_visit[v] = 1;

    // 此处添加访问逻辑

    for(int edge_inx = h[v]; ~edge_inx; edge_inx = ne[edge_inx]) {

        if(!is_visit[e[edge_inx]]) {

            dfs_visit(e[edge_inx]);

1

2

3

4

5

6

7

算法板子 - https://lixu.cc

86 / 202



 

BFS 广度优先搜索  
适用场景： 无权图的最短路径、层序遍历、拓扑排序。

        }

    }

    // 访问退出时间戳

}

void dfs(int n) {

    memset(is_visit, 0, sizeof(bool) * (n + 2));

    for(int i = 1; i <= n; i++) {

        if(!is_visit[i]) {

            dfs_visit(i);

        }

    }

}
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/* for 链式前向星

 * BFS板子 (求无权图最短路)

 * s: 起点

 * dist[]: 存储起点到各点的距离，兼顾了 visited 数组的功能

 */

int dist[N]; // 距离数组

void bfs(int s) {

    // 1. 初始化距离为 -1 (表示未访问)

    memset(dist, -1, sizeof(dist));

    queue<int> q;

    

    // 2. 起点入队

    dist[s] = 0;

    q.push(s);

    

    while (!q.empty()) {

        int u = q.front(); q.pop();

        

        // 3. 遍历邻居

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            

            // 如果 v 未被访问过

            if (dist[v] == -1) {

                dist[v] = dist[u] + 1; // 距离 +1

                q.push(v);

            }

        }

    }

}
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拓扑排序  
在一个有向无环图（DAG）中，找到一种线性顺序，把所有顶点排成列，使得：

对每条边 ，  都出现在  前面。

伪代码简化版：

1. 对图做 BFS，记录所有 。

2. 把所有顶点按  从大到小排序，得到序列 。

3. 输出  即拓扑序。

bool is_visit[maxn];

void bfs_visit(int v) { // 广度优先搜索，使用栈存储

    is_visit[v] = 1;

    queue<int> q;

    q.push(v);

    while (!q.empty()) {

        v = q.front();

        q.pop();

        for(int edge_inx = h[v]; ~edge_inx; edge_inx = ne[edge_inx]) {

            if(!is_visit[e[edge_inx]]) {

                // 访问逻辑

                bfs_visit(e[edge_inx]);

                q.push(e[edge_inx]);

            }

        }

    }

}

void bfs(int n) {

    memset(is_visit, 0, sizeof(bool) * (n + 2));

    for(int i = 1; i <= n; i++) {

        if(!is_visit[i]) {

            bfs_visit(i);

        }

    }

}
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/*

 * 拓扑排序参数说明：

 * n: 点的总数

 * deg[]: 入度数组 (关键！读入边时记得 deg[v]++)

 * topo[]: 存储最终的拓扑序列

 * 返回值: true 表示成功，false 表示图中有环

 */

int deg[N];         // 入度数组

int topo[N], t_cnt; // 结果数组 和 计数器

bool toposort(int n) {
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    t_cnt = 0;

    queue<int> q; 

    // 如果题目要求字典序最小，把上一行换成：

    // priority_queue<int, vector<int>, greater<int>> q;

    // 1. 将所有初始入度为 0 的点入队

    for (int i = 1; i <= n; i++) {

        if (deg[i] == 0) q.push(i);

    }

    while (!q.empty()) {

        int u = q.front(); q.pop(); // 取出队头

        // 如果是优先队列，用 int u = q.top(); q.pop();

        

        topo[++t_cnt] = u; // 加入结果序列

        // 2. 遍历 u 的所有出边，模拟“删边”操作

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            

            deg[v]--; // v 的入度减 1

            if (deg[v] == 0) {

                q.push(v); // 如果入度变为 0，则入队

            }

        }

    }

    // 3. 判断是否所有点都进入了序列

    // 如果少于 n，说明有环，剩余的点互为前驱，无法入队

    return t_cnt == n;

}

int main() {

    int n, m;

    cin >> n >> m;

    

    // 0. 初始化

    memset(head, -1, sizeof(head));

    cnt_E = 0;

    memset(deg, 0, sizeof(deg)); // 清空入度

    // 1. 读入边

    for (int i = 0; i < m; i++) {

        int u, v;

        cin >> u >> v;

        addEdge(u, v, 0); // 有向图，权值通常不需要，填0

        deg[v]++;         // 【关键】统计入度！这一步千万别漏！

    }

    // 2. 调用拓扑排序

    if (toposort(n)) {

        // 输出结果

        for (int i = 1; i <= n; i++) {
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最小生成树  

Kruskal算法  

            cout << topo[i] << " ";

        }

    } else {

        cout << "有环，无法排序"; // 比如输出 -1

    }

    

    return 0;

}
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// =================================================

// 算法 1: Kruskal 

// 适用：稀疏图 | 复杂度：O(E log E)

// 核心依赖：并查集 + 边排序

// =================================================

/*

逻辑核心（方便背诵）：

1. 转换：将链式前向星的边转存为 {u, v, w} 数组（因为Kruskal需要遍历所有边并排序）。

2. 排序：按权值 w 从小到大排序。

3. 循环：遍历排序后的边，若 find(u) != find(v)（不连通），则合并 unite(u, v)，累加权值，边数+1。

4. 判断：若选中边数 == n-1，成功；否则图不连通。

*/

// 为了Kruskal专门定义的简单结构体，方便排序

struct KEdge {

    int u, v, w;

    bool operator<(const KEdge &other) const {

        return w < other.w;

    }

};

int fa[N]; // 并查集数组

// 并查集查找 (路径压缩)

int find(int x) {

    return x == fa[x] ? x : fa[x] = find(fa[x]);

}

/*

 * 函数名: kruskal

 * 参数: n (点数)

 * 返回: 最小生成树权值和 (若不连通返回 -1)

 * 注意: 调用前需正常建图 addEdge

 */

int kruskal(int n) {

    // 1. 初始化并查集

    for (int i = 1; i <= n; i++) fa[i] = i;

    // 2. 将链式前向星数据提取到临时数组 (方便排序)

    // 考试技巧：如果题目直接给边列表，可跳过链式前向星直接读入到 kEdges

    vector<KEdge> kEdges;
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非链式前向星：

    for (int u = 1; u <= n; u++) {

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            // 链式前向星无向图存了两遍，为了不重复算，只取 u < v 的边

            if (u < v) { 

                kEdges.push_back({u, v, e[i].w});

            }

        }

    }

    // 3. 排序

    sort(kEdges.begin(), kEdges.end());

    // 4. 贪心选边

    int res = 0, cnt = 0;

    for (auto &edge : kEdges) {

        int rootU = find(edge.u);

        int rootV = find(edge.v);

        if (rootU != rootV) {

            fa[rootU] = rootV; // 合并

            res += edge.w;

            cnt++;

        }

    }

    // 5. 判断连通性 (n个点需要 n-1 条边)

    if (cnt < n - 1) return -1;

    return res;

}
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#include <iostream>

#include <algorithm> // 必须包含，用于 sort

using namespace std;

// ================== 参数配置 ==================

const int N = 10005;    // 最大点数

const int M = 200005;   // 最大边数 (注意：Kruskal存边是线性的，无向图存一次即可，不需要*2)

// ================== 数据结构 ==================

struct Edge {

    int u, v, w;

    // 重载 < 运算符，sort时自动按权值排序

    bool operator<(const Edge &t) const {

        return w < t.w;

    }

} edges[M]; // 边集数组

int fa[N]; // 并查集数组

// ================== 核心函数 ==================

// 并查集查找 (含路径压缩)

int find(int x) {
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    return x == fa[x] ? x : fa[x] = find(fa[x]);

}

/*

 * 函数名: kruskal

 * 参数: n (点数), m (边数)

 * 返回: 最小生成树权值和 (若不连通返回 -1)

 * 注意: 请确保 edges[1...m] 已经读入了数据

 */

int kruskal(int n, int m) {

    // 1. 初始化并查集

    for (int i = 1; i <= n; i++) fa[i] = i;

    // 2. 排序 (关键步骤)

    // sort范围：如果是从下标1开始存，则是 edges+1, edges+1+m

    sort(edges + 1, edges + 1 + m);

    int res = 0; // 最小生成树总权值

    int cnt = 0; // 已选边数

    // 3. 贪心选边

    for (int i = 1; i <= m; i++) {

        int u = edges[i].u;

        int v = edges[i].v;

        int w = edges[i].w;

        int rootU = find(u);

        int rootV = find(v);

        // 如果不在同一个集合，则合并

        if (rootU != rootV) {

            fa[rootU] = rootV; // 合并集合

            res += w;          // 累加权值

            cnt++;             // 计数

            

            // 优化：如果已经选够了 n-1 条边，可以提前退出

            if (cnt == n - 1) break;

        }

    }

    // 4. 判断连通性

    if (cnt < n - 1) return -1;

    return res;

}

// ================== 使用案例 ==================

int main() {

    int n, m;

    // 模拟输入：4个点，5条边

    // 实际考试中通常是 cin >> n >> m;

    n = 4; m = 5;

    // 模拟读入边 (u, v, w)
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Prim算法  

    // 1-2(1), 2-3(2), 1-3(4), 3-4(3), 1-4(5)

    // 注意：下标从1开始，方便和 n 对应

    edges[1] = {1, 2, 1};

    edges[2] = {2, 3, 2};

    edges[3] = {1, 3, 4};

    edges[4] = {3, 4, 3};

    edges[5] = {1, 4, 5};

    // 实际考试读入循环：

    /*

    for(int i = 1; i <= m; i++){

        cin >> edges[i].u >> edges[i].v >> edges[i].w;

    }

    */

    int ans = kruskal(n, m);

    if (ans == -1) cout << "Graph disconnected" << endl;

    else cout << "MST Weight: " << ans << endl; // 预期输出 6

    return 0;

}
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// =================================================

// 算法 2: Prim (普里姆) - 堆优化版

// 适用：稠密图 | 复杂度：O(E log V)

// 核心依赖：优先队列 (priority_queue) + dis数组

// =================================================

/*

逻辑核心（方便背诵）：

1. 准备：dis[]全INF，vis[]全false。dis[start]=0。

2. 入堆：{0, start} 推入优先队列 (存 pair<距离, 点>)。

3. 循环：堆不空时弹出 {d, u}。

   - 若 vis[u] 为真，跳过 (continue)。

   - 标记 vis[u] = true，累加权值 res += d，计数 cnt++。

4. 松弛：遍历 u 的邻边 v，若 !vis[v] && w < dis[v]，更新 dis[v]=w，推入堆。

*/

typedef pair<int, int> PII; // {距离, 点ID}

/*

 * 函数名: prim

 * 参数: n (点数), start (起点，通常为1)

 * 返回: 最小生成树权值和 (若不连通返回 -1)

 */

int prim(int n, int start) {

    int dis[N];

    bool vis[N];

    memset(dis, 0x3f, sizeof(dis)); // 初始化无穷大

    memset(vis, 0, sizeof(vis));
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单源最短路  
拿到题目，请按以下顺序问自己问题：

1. 图中有负权边吗？

没有 (所有边权 )  Dijkstra (堆优化版) 【首选，最稳】

有  进入下一步。

2. 图是有向无环图 (DAG) 吗？

是 (比如任务调度、层级结构)  基于拓扑排序的 DP 【最快，线性时间】

不是 (有环，或者不知道有没有环)  进入下一步。

3. 需要判断负环，或者由于负边无法使用 Dijkstra？

一般情况  SPFA 【平均很快，但可能被卡】

数据量极小 ( ) 或限制极其严格  Bellman-Ford 【最慢，但绝对正确】

    

    // 小根堆：距离小的在顶端

    priority_queue<PII, vector<PII>, greater<PII>> q;

    

    dis[start] = 0;

    q.push({0, start}); // {权值, 点}

    

    int res = 0;

    int cnt = 0; // 记录已加入集合的点数

    while (!q.empty()) {

        int d = q.top().first;

        int u = q.top().second;

        q.pop();

        if (vis[u]) continue; // 懒惰删除：如果该点已处理过，跳过

        vis[u] = true;

        res += d;

        cnt++;

        // 遍历 u 的所有邻边 (完全套用你的 traverse 模版)

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            int w = e[i].w;

            

            // Prim核心更新逻辑：看这条边是否比 v 当前到树的距离更近

            if (!vis[v] && w < dis[v]) {

                dis[v] = w;

                q.push({dis[v], v});

            }

        }

    }

    // 判断连通性 (是否所有点都加入了生成树)

    if (cnt < n) return -1; 

    return res;

}
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算法
是否支持
负权边

是否支持
负环

适用结构
时间复杂度 (V点
E边)

评价

Dijkstra (堆
优化)

❌ 不支持 ❌
任意图 (无
负边)

正权图必选，稳定高
效

SPFA ✅ 支持
✅ (可检
测)

任意图
平均 
最坏 

负权图首选，容易被
恶意数据卡死

Bellman-
Ford

✅ 支持
✅ (可检
测)

任意图
太慢，通常作为 SPFA
的理论基础

DAG Topo ✅ 支持
❌ (图本
身无环)

仅 DAG
理论最快，但适用范
围窄

Bellman-Ford  

/* 

 * 函数：bellman_ford

 * 参数：

 *   s: 起点编号

 *   n: 图中总点数 (用于确定松弛轮数)

 * 返回值：

 *   bool: true 表示求最短路成功，false 表示发现负环

 * 功能：

 *   计算 s 到所有点的最短路，结果存入 dist[]

 */

int dist[N]; // 存储起点到各点的最短距离

bool bellman_ford(int s, int n) {

    // 1. 初始化距离

    // 0x3f 是常用技巧，memset按字节赋值，0x3f3f3f3f 约等于 10^9，且相加不易溢出

    memset(dist, 0x3f, sizeof(dist));

    dist[s] = 0;

    // 2. 循环 n-1 次进行松弛

    bool loose; // 优化标记

    for (int k = 1; k < n; k++) {

        loose = false;

        // 遍历所有边 (利用前向星: 遍历点u -> 遍历u的边)

        for (int u = 1; u <= n; u++) {

            if (dist[u] == INF) continue; // 无法到达的点不作为起点松弛

            for (int i = head[u]; i != -1; i = e[i].next) {

                int v = e[i].to;

                int w = e[i].w;

                // 松弛操作

                if (dist[v] > dist[u] + w) {

                    dist[v] = dist[u] + w;

                    loose = true;

                }

            }

        }

        // 如果一轮下来没有任何点更新，说明最短路已确定，提前结束
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基于拓扑排序的DAG图  

        if (!loose) return true;

    }

    // 3. 第 n 次遍历，检测负环

    for (int u = 1; u <= n; u++) {

        if (dist[u] == INF) continue;

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to, w = e[i].w;

            // 如果还能变得更短，说明有负环

            if (dist[v] > dist[u] + w) return false; 

        }

    }

    

    return true; // 无负环

}

/*

 * 使用案例

 */

int main() {

    // 1. 建图

    initList();

    int n = 5; // 假设5个点

    // addEdge(u, v, w); 

    addEdge(1, 2, 2);

    addEdge(2, 3, -4); // 负权边

    addEdge(3, 4, 1);

    

    // 2. 运行算法

    if (bellman_ford(1, n)) {

        // 3. 输出结果

        // 此时 dist[x] 即为 1 到 x 的最短距离

        if (dist[4] == INF) cout << "Unreachable" << endl;

        else cout << "Min dist to 4: " << dist[4] << endl;

    } else {

        cout << "Negative cycle detected!" << endl;

    }

    return 0;

}
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#include <iostream>

#include <cstring>

#include <queue>

#include <vector>

#include <algorithm>

using namespace std;

// ================== 基础定义部分 (参考你提供的) ==================

const int N = 10005;      // 最大点数

const int M = 20005;      // 最大边数

const int INF = 0x3f3f3f3f; // 约10亿

1

2

3

4

5

6

7

8

9

10

11

12

算法板子 - https://lixu.cc

96 / 202



struct Edge {

    int to, w, next;

} e[M];

int head[N], cnt_E = 0;

int deg[N];               // 入度

int topo[N], t_cnt;       // 拓扑序列

int dist[N];              // 存储最短路结果

// 初始化

void init(int n) {

    cnt_E = 0;

    // 0 到 n 或者 1 到 n 根据题目调整

    for(int i = 0; i <= n; i++) {

        head[i] = -1;

        deg[i] = 0;

    }

}

// 加边 (有向边 u->v, 权值w)

void addEdge(int u, int v, int w) {

    e[cnt_E].to = v;

    e[cnt_E].w = w;

    e[cnt_E].next = head[u];

    head[u] = cnt_E++;

    deg[v]++; // 拓扑排序必须统计入度

}

// ================== 算法模版部分 ==================

/*

 * 拓扑排序 (你提供的版本，稍作整理)

 * 返回: true(成功/是DAG), false(失败/有环)

 */

bool toposort(int n) {

    t_cnt = 0;

    queue<int> q;

    for (int i = 1; i <= n; i++) {

        if (deg[i] == 0) q.push(i);

    }

    while (!q.empty()) {

        int u = q.front(); q.pop();

        topo[++t_cnt] = u;

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            if (--deg[v] == 0) q.push(v);

        }

    }

    return t_cnt == n;

}
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 * DAG 单源最短路

 * 参数: s (起点), n (点总数)

 * 功能: 计算 s 到图中所有点的最短路径，存入 dist[]

 * 前置: 必须先调用 toposort 填充 topo[] 数组

 * 适用: 有向无环图，允许负权边

 */

void dagShortestPath(int s, int n) {

    // 1. 初始化距离

    // memset 0x3f 会将 int 设置为 1061109567 (即 INF)

    memset(dist, 0x3f, sizeof(dist));

    dist[s] = 0;

    // 2. 按拓扑序扫描 (核心)

    // 只要按照拓扑序处理，处理到点 u 时，u 的所有前驱都已经处理完毕

    for (int i = 1; i <= n; i++) {

        int u = topo[i]; 

        // 如果 s 无法到达 u，则无需通过 u 去更新后面，直接跳过

        if (dist[u] == INF) continue;

        // 遍历 u 的所有出边进行松弛

        for (int k = head[u]; k != -1; k = e[k].next) {

            int v = e[k].to;

            int w = e[k].w;

            if (dist[v] > dist[u] + w) {

                dist[v] = dist[u] + w;

                // 注意：DAG 不需要像 Dijkstra 那样把 v 放入优先队列

                // 因为 v 在拓扑序中一定在 u 后面，迟早会被遍历到

            }

        }

    }

}

// ================== 使用案例 (Main函数) ==================

int main() {

    int n = 6; // 6个点

    init(n);

    // 建图 (DAG)

    // 1 -> 2 (wt 5)

    // 1 -> 3 (wt 3)

    // 3 -> 2 (wt 1)  (路径 1->3->2 长度4，优于 1->2)

    // 2 -> 4 (wt 2)

    // 2 -> 5 (wt 6)

    // 4 -> 5 (wt 1)

    // 4 -> 6 (wt 1)

    addEdge(1, 2, 5);

    addEdge(1, 3, 3);

    addEdge(3, 2, 1);

    addEdge(2, 4, 2);

    addEdge(2, 5, 6);

    addEdge(4, 5, 1);

    addEdge(4, 6, 1);
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Dijkstra  

适用场景： 非负权图的最短路径。 说明： 这是一个标准的 O(E log V)  实现，使用 priority_queue，即便数据量

大也不会 TLE。

    // 1. 先跑拓扑排序

    if (toposort(n)) {

        // 2. 如果是 DAG，计算从点 1 出发的最短路

        dagShortestPath(1, n);

        // 打印结果

        cout << "从起点 1 出发的最短距离：" << endl;

        for (int i = 1; i <= n; i++) {

            if (dist[i] == INF) cout << "INF ";

            else cout << dist[i] << " ";

        }

        cout << endl;

        // 预期输出: 0 4 3 6 7 7 

        // 解释 dist[2]: 1->3->2 (3+1=4)

        // 解释 dist[5]: 1->3->2->4->5 (3+1+2+1=7)

    } else {

        cout << "图中有环，无法使用 DAG 最短路算法" << endl;

    }

    return 0;

}
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/*

 * Dijkstra 最短路板子 (优先队列优化)

 * s: 起点

 * dis[]: 存储起点到各点的最短距离

 * vis[]: 标记是否已经确定最短路

 */

typedef pair<int, int> PII; // {距离, 点编号}

int dis[N];

bool vis[N];

void dijkstra(int s) {

    // 1. 初始化

    memset(dis, 0x3f, sizeof(dis)); // 初始化为无穷大

    memset(vis, 0, sizeof(vis));

    dis[s] = 0;

    

    // 小根堆：距离更小的排在前面

    priority_queue<PII, vector<PII>, greater<PII>> q;

    q.push({0, s}); // {距离, 点}

    

    while (!q.empty()) {
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SPFA  

        // 取出距离最近的点

        int u = q.top().second; 

        q.pop();

        

        // 懒惰删除：如果该点已经处理过(有更短的路先出队了)，跳过

        if (vis[u]) continue;

        vis[u] = true;

        

        // 松弛操作

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            int w = e[i].w;

            

            if (dis[v] > dis[u] + w) {

                dis[v] = dis[u] + w;

                q.push({dis[v], v}); // 将更新后的 {距离, 点} 入堆

            }

        }

    }

}

// 使用后：dis[x] 即为起点 s 到 x 的最短距离

// 如果 dis[x] == INF，说明不可达
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#include <iostream>

#include <cstring>

#include <queue>

#include <algorithm>

using namespace std;

// ==== 你原本的结构定义 ====

const int N = 10005;  // 最大点数 V_MAX

const int M = 20005;  // 最大边数 E_MAX (无向图要 x2)

const int INF = 0x3f3f3f3f; 

struct Edge {

    int to, w, next; 

} e[M]; // 注意：这里用 M

int cnt_E = 0;

int head[N]; // 注意：这里用 N

// 初始化函数 (多组数据时必须调用)

void initList() {

    memset(head, -1, sizeof(head));

    cnt_E = 0; // 别忘了重置边计数器！

}

void addEdge(int x, int y, int w) {
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    e[cnt_E].to = y;

    e[cnt_E].w = w;

    e[cnt_E].next = head[x];

    head[x] = cnt_E++;

}

// ==== SPFA 核心板子 ====

int dist[N];      // 存储起点到各点的最短距离

bool in_queue[N]; // 标记是否在队列中 (SPFA的核心优化)

int cnt_update[N]; // (可选) 用于判断负环：记录每个点入队次数

// 返回 true 表示成功求出最短路

// 返回 false 表示图中存在“负环”，无法求最短路

bool spfa(int s, int n) { // s: 起点, n: 总点数(用于判负环)

    // 1. 初始化

    memset(dist, 0x3f, sizeof(dist)); // 初始化为无穷大

    memset(in_queue, false, sizeof(in_queue));

    memset(cnt_update, 0, sizeof(cnt_update));

    

    // 2. 起点入队

    dist[s] = 0;

    queue<int> q;

    q.push(s);

    in_queue[s] = true;

    

    // 3. 循环松弛

    while (!q.empty()) {

        int u = q.front(); q.pop();

        in_queue[u] = false; // 出队后标记为不在队列

        

        // 遍历所有出边

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            int w = e[i].w;

            

            // 【松弛操作】如果走 u->v 比以前的路径更短

            if (dist[v] > dist[u] + w) {

                dist[v] = dist[u] + w;

                

                // 判负环逻辑 (如果不需要判负环，可以删掉下面这块)

                cnt_update[v] = cnt_update[u] + 1;

                if (cnt_update[v] >= n) return false; // 存在负环

                

                // 如果 v 不在队列中，才加入队列

                if (!in_queue[v]) {

                    q.push(v);

                    in_queue[v] = true;

                }

            }

        }

    }

    return true; // 正常结束

}
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任意两点最短路径  

矩阵相乘版本  

80

#include <iostream>

#include <vector>

#include <algorithm>

#include <iomanip>

using namespace std;

// 定义无穷大，使用 1e9 防止两数相加爆 int，如果权值很大请改用 long long

const int INF = 1e9;

/*

 * 函数 1: 扩展最短路径 (Extend-Shortest-Paths)

 * 对应数学公式: l_ij^(m) = min( l_ik^(m-1) + w_kj )

 * 

 * 参数:

 *   L: 上一轮的距离矩阵 (对应 l^(m-1))

 *   W: 原始的权重矩阵 (对应 w)

 *   n: 节点数量

 * 返回:

 *   NewL: 这一轮计算出的距离矩阵 (对应 l^(m))

 * 复杂度: O(n^3)

 */

vector<vector<int>> extend(const vector<vector<int>>& L, const vector<vector<int>>& W, 

int n) {

    // 初始化新矩阵为 INF

    vector<vector<int>> NewL(n + 1, vector<int>(n + 1, INF));

    for (int i = 1; i <= n; i++) {

        for (int j = 1; j <= n; j++) {

            // 遍历中间点 k

            for (int k = 1; k <= n; k++) {

                // 防止 INF + positive 溢出或错误更新

                if (L[i][k] != INF && W[k][j] != INF) {

                    NewL[i][j] = min(NewL[i][j], L[i][k] + W[k][j]);

                }

            }

        }

    }

    return NewL;

}

/*

 * 函数 2: 慢速版全源最短路径 (Slow-All-Pairs-Shortest-Paths)

 * 逻辑: 重复 n-1 次扩展，涵盖从 1 条边到 n-1 条边的所有路径
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 * 

 * 参数:

 *   W: 邻接矩阵 (W[i][j] 表示 i到j 的边权，无边为 INF，i==j 为 0)

 *   n: 节点数量

 * 返回:

 *   最终的最短路径矩阵

 * 总复杂度: O(n^4)

 */

vector<vector<int>> slow_APSP(const vector<vector<int>>& W, int n) {

    // L^(1) = W

    vector<vector<int>> L = W;

    // 迭代 m 从 2 到 n-1 (即还需要扩展 n-2 次)

    // 每次迭代让路径允许的边数 +1

    for (int m = 2; m < n; m++) {

        L = extend(L, W, n);

    }

    

    return L;

}

/*

 * 函数 3: 打印矩阵

 * 用于输出最终结果

 */

void print_matrix(const vector<vector<int>>& dist, int n) {

    cout << "Shortest Path Matrix:" << endl;

    for (int i = 1; i <= n; i++) {

        for (int j = 1; j <= n; j++) {

            if (dist[i][j] == INF) cout << setw(5) << "INF";

            else cout << setw(5) << dist[i][j];

        }

        cout << endl;

    }

}

int main() {

    // 示例数据：5个点

    int n = 5;

    

    // 初始化邻接矩阵，下标从1开始，初始全为INF

    vector<vector<int>> W(n + 1, vector<int>(n + 1, INF));

    

    // 对角线为0

    for(int i=1; i<=n; i++) W[i][i] = 0;

    // 建图 (u, v, w)

    // 注意：如果是无向图，需要 W[v][u] = w;

    auto add_edge = [&](int u, int v, int w) { W[u][v] = w; };

    

    add_edge(1, 2, 3);

    add_edge(1, 3, 8);

    add_edge(1, 5, -4);
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Floyd算法  

    add_edge(2, 4, 1);

    add_edge(2, 5, 7);

    add_edge(3, 2, 4);

    add_edge(4, 1, 2);

    add_edge(4, 3, -5);

    add_edge(5, 4, 6);

    // 计算

    vector<vector<int>> result = slow_APSP(W, n);

    // 输出

    print_matrix(result, n);

    return 0;

}
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#include <iostream>

#include <vector>

#include <algorithm>

#include <cstring>

using namespace std;

const int N = 510; // 根据题目最大节点数调整，通常Floyd适用于 N <= 500

const long long INF = 0x3f3f3f3f3f3f3f3f; // 使用long long防止相加溢出

// d[i][j]: 存储 i 到 j 的最短距离

// p[i][j]: Path 矩阵，存储 i 到 j 最短路径中 j 的前驱节点

long long d[N][N]; 

int p[N][N]; 

int n, m; // n: 节点数, m: 边数

// 初始化函数：在读入边之前调用

// 参数：节点数量 n

void init_floyd(int n) {

    for (int i = 1; i <= n; i++) {

        for (int j = 1; j <= n; j++) {

            if (i == j) {

                d[i][j] = 0;

                p[i][j] = -1; // 自身无前驱

            } else {

                d[i][j] = INF;

                p[i][j] = -1; // -1 表示不可达

            }

        }

    }

}

/**
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 * Floyd-Warshall 核心算法

 * 参数：n 节点数量 (编号 1~n)

 * 作用：计算任意两点间最短路，并维护路径前驱

 * 复杂度：O(n^3)

 */

void floyd(int n) {

    // k 必须在最外层！代表允许经过的中间节点集合 {1...k}

    for (int k = 1; k <= n; k++) {

        for (int i = 1; i <= n; i++) {

            for (int j = 1; j <= n; j++) {

                // 剪枝：如果中转点不可达，则跳过（防止 INF + x 溢出或无效计算）

                if (d[i][k] == INF || d[k][j] == INF) continue;

                if (d[i][k] + d[k][j] < d[i][j]) {

                    d[i][j] = d[i][k] + d[k][j];

                    // i->j 的新路径是 i->...->k->...->j

                    // j 的前驱来自于 k->j 这段路中 j 的前驱

                    p[i][j] = p[k][j]; 

                }

            }

        }

    }

}

/**

 * 路径还原函数

 * 参数：u 起点, v 终点

 * 返回：vector<int> 包含从 u 到 v 的完整路径节点

 * 注意：如果不可达，返回空数组

 */

vector<int> get_path(int u, int v) {

    vector<int> path;

    if (d[u][v] == INF) return path; // 不可达

    int curr = v;

    while (curr != u && curr != -1) {

        path.push_back(curr);

        curr = p[u][curr]; // 向前回溯：找 u->curr 路径中 curr 的前驱

    }

    

    if (curr == -1) return {}; // 异常情况处理

    

    path.push_back(u); // 最后加入起点

    reverse(path.begin(), path.end()); // 因为是回溯，所以需要翻转

    return path;

}

// 使用案例

int main() {

    // 1. 输入处理

    cin >> n >> m;

    

    init_floyd(n); // 务必先初始化
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最大流  

EK算法  

    // 读入边

    for (int i = 0; i < m; i++) {

        int u, v;

        long long w;

        cin >> u >> v >> w;

        // 处理重边：保留最小边

        if (w < d[u][v]) {

            d[u][v] = w;

            p[u][v] = u; // 初始时，u->v 的前驱就是 u

            // d[v][u] = w; p[v][u] = v; // 如果是无向图，去掉注释

        }

    }

    // 2. 运行算法

    floyd(n);

    // 3. 查询案例

    int q_start, q_end;

    cin >> q_start >> q_end; // 假设查询 1 到 n

    if (d[q_start][q_end] == INF) {

        cout << "No Path" << endl;

    } else {

        cout << "Min Distance: " << d[q_start][q_end] << endl;

        

        // 打印路径

        vector<int> path = get_path(q_start, q_end);

        cout << "Path: ";

        for (int i = 0; i < path.size(); i++) {

            cout << path[i] << (i == path.size() - 1 ? "" : " -> ");

        }

        cout << endl;

    }

    return 0;

}
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#include <iostream>

#include <cstring>

#include <queue>

#include <algorithm>

using namespace std;

// =================配置区域=================

const int N = 10005;      // 最大点数

const int M = 20005 * 2;  // 最大边数 (注意：网络流加双向边，大小至少开题目边数 * 2)
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const int INF = 0x3f3f3f3f;

struct Edge {

    int to, w, next; // 终点，容量(剩余流量)，下一条边

} e[M];

int head[N], cnt_E = 0;

int pre[N]; // pre[v]: 记录到达点 v 的边的索引 (方便修改权值)

int inc[N]; // inc[v]: 记录源点到 v 路径上的最小剩余容量 (瓶颈)

int vis[N]; // BFS 访问标记

void initList() {

    memset(head, -1, sizeof(head));

    cnt_E = 0;

}

// 基础加边 (内部使用)

void addEdge(int u, int v, int w) {

    e[cnt_E].to = v;

    e[cnt_E].w = w;

    e[cnt_E].next = head[u];

    head[u] = cnt_E++;

}

/*

 * 【网络流专用加边】

 * 参数: u->v 容量为 w

 * 说明: 正向边容量 w, 反向边容量 0 (用于反悔)

 * 技巧: cnt_E 成对增加 (0,1), (2,3)，i^1 即为反向边

 */

void addFlowEdge(int u, int v, int w) {

    addEdge(u, v, w); // 正向

    addEdge(v, u, 0); // 反向

}

// =================算法核心=================

/*

 * 函数: bfs

 * 功能: 在残留网络中寻找 s 到 t 的增广路径

 * 返回: 是否存在路径 (true/false)

 */

bool bfs(int s, int t) {

    memset(vis, 0, sizeof(vis));

    queue<int> q;

    

    q.push(s);

    vis[s] = 1;

    inc[s] = INF; // 源点流量无限

    

    while (!q.empty()) {

        int u = q.front(); q.pop();
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        // 遍历所有边

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            int w = e[i].w;

            

            // 关键：未访问 且 剩余容量 > 0

            if (!vis[v] && w > 0) {

                vis[v] = 1;

                inc[v] = min(inc[u], w); // 更新瓶颈流量

                pre[v] = i;              // 记录这是哪条边过来的 (存索引)

                

                q.push(v);

                if (v == t) return true; // 优化：找到终点立即返回

            }

        }

    }

    return false;

}

/*

 * 函数: EK

 * 功能: 计算最大流

 * 参数: s 源点, t 汇点

 * 返回: 最大流量

 */

int EK(int s, int t) {

    int max_flow = 0;

    

    // 只要还能找到增广路径

    while (bfs(s, t)) {

        int k = inc[t]; // 本次增广的流量瓶颈

        max_flow += k;

        

        // 【回溯更新】

        int u = t;

        while (u != s) {

            int i = pre[u]; // 取出通向 u 的边索引

            

            e[i].w -= k;    // 正向边减少

            e[i ^ 1].w += k; // 反向边增加 (i^1 是 i 的反向边索引)

            

            // 这里的 e[i^1].to 就是边的起点，即上一个节点

            u = e[i ^ 1].to; 

        }

    }

    return max_flow;

}

// =================使用案例=================

int main() {

    // 假设输入：点数 n，边数 m，源点 s，汇点 t

    int n, m, s, t;

    // 常用读入优化 (考试可不写)
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Dinic  

    ios::sync_with_stdio(false); cin.tie(0); 

    while (cin >> n >> m >> s >> t) {

        initList(); // 多组数据记得初始化

        

        for (int i = 0; i < m; i++) {

            int u, v, w;

            cin >> u >> v >> w;

            // 注意：如果是单向流用这个，如果是无向图容量需双向建立

            addFlowEdge(u, v, w); 

        }

        

        cout << EK(s, t) << endl;

    }

    return 0;

}
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#include <iostream>

#include <cstring>

#include <queue>

#include <algorithm>

using namespace std;

// ================== 参数配置 ==================

const int MAXN = 10005;  // 最大点数

const int MAXM = 200005; // 最大边数 (注意：网络流需要反向边，所以数组大小要是题目边数的2倍！)

const int INF = 0x3f3f3f3f;

// ================== 链式前向星结构 ==================

struct Edge {

    int to, w, next;

} e[MAXM];

int head[MAXN];

int cnt_E = 0;

// Dinic特需数组

int dep[MAXN]; // 深度数组 (分层图)

int cur[MAXN]; // 当前弧优化数组 (记录DFS遍历到了哪条边)

// 初始化函数

void init() {

    memset(head, -1, sizeof(head));

    cnt_E = 0;

}

// 加边函数：同时加入 正向边(cap) 和 反向边(0)

// 注意：网络流中通常由 addFlowEdge 调用底层的 addEdge
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void addEdge(int u, int v, int w) {

    e[cnt_E].to = v;

    e[cnt_E].w = w;

    e[cnt_E].next = head[u];

    head[u] = cnt_E++;

}

// 对外调用的加边函数

void addFlowEdge(int u, int v, int w) {

    addEdge(u, v, w); // 正向边，索引为偶数 (如 0)

    addEdge(v, u, 0); // 反向边，索引为奇数 (如 1)

}

// ================== Dinic 核心部分 ==================

// BFS: 构建分层图，判断是否能到达汇点 T

bool bfs(int S, int T) {

    memset(dep, -1, sizeof(dep)); // 初始化深度为 -1

    queue<int> q;

    

    dep[S] = 0;

    q.push(S);

    

    // 每次BFS前，把 head 复制给 cur，重置当前弧

    // 也可以放在 dinic 主函数循环里，但这里写不容易忘

    memcpy(cur, head, sizeof(head)); 

    while (!q.empty()) {

        int u = q.front();

        q.pop();

        

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            int w = e[i].w;

            

            // 如果有剩余容量 且 未被访问过

            if (w > 0 && dep[v] == -1) {

                dep[v] = dep[u] + 1;

                q.push(v);

            }

        }

    }

    return dep[T] != -1; // 如果汇点被标记深度，说明有路

}

// DFS: 多路增广

// u: 当前节点, limit: 当前路径流过来的最小流量限制, T: 汇点

int dfs(int u, int limit, int T) {

    if (u == T || limit == 0) return limit; // 到达汇点或无流量

    

    int flow = 0; // 本次DFS能从u推出去的总流量

    

    // 【关键】当前弧优化：从 cur[u] 开始遍历，而不是 head[u]
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    // 引用 &i 直接修改 cur[u] 的值，下次进这个点直接从下一条边开始

    for (int &i = cur[u]; i != -1; i = e[i].next) {

        int v = e[i].to;

        int w = e[i].w;

        

        // 必须满足：层级是下一层 且 有剩余容量

        if (dep[v] == dep[u] + 1 && w > 0) {

            // 递归寻找增广量

            int f = dfs(v, min(limit, w), T);

            

            if (f > 0) {

                e[i].w -= f;       // 正向边减少容量

                e[i ^ 1].w += f;   // 反向边增加容量 (利用异或: 0^1=1, 1^1=0)

                flow += f;         // 累加推出去的流

                limit -= f;        // 剩余可推流量减少

                

                if (limit == 0) break; // 如果流干了，就不用看后面的边了

            }

        }

    }

    return flow;

}

// Dinic 主入口

int dinic(int S, int T) {

    int max_flow = 0;

    // 只要能建立分层图(有路)，就持续增广

    while (bfs(S, T)) {

        // 注意：bfs里已经重置了 cur 数组

        max_flow += dfs(S, INF, T);

    }

    return max_flow;

}

// ================== 使用示例 ==================

int main() {

    int n, m, S, T; // 点数，边数，源点，汇点

    // 假设输入格式: N M S T

    // 之后 M 行: u v w

    if (cin >> n >> m >> S >> T) {

        init(); // 别忘了初始化

        for (int i = 0; i < m; i++) {

            int u, v, w;

            cin >> u >> v >> w;

            addFlowEdge(u, v, w);

        }

        cout << dinic(S, T) << endl;

    }

    return 0;

}
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二 分图  

匈牙利算法  

#include <iostream>

#include <cstring>

#include <algorithm>

using namespace std;

/* 

 * 参数说明:

 * N: 点的最大数量 (左边点+右边点，或者单边最大点数，看题目编号方式)

 * M: 边的最大数量

 * match[v]: 记录右边点 v 当前匹配的左边点是哪个 (match[v] = u)

 * vis[v]:   记录在每一轮 DFS 中，右边点 v 是否被访问过 (防死循环)

 */

const int N = 2005;      // 节点数上限

const int M = 100005;    // 边数上限

// 链式前向星存图

struct Edge {

    int to, next;

} e[M];

int head[N], cnt_E = 0;

int match[N]; // 右边点的匹配对象

bool vis[N];  // 访问标记 (bool即可)

void initList() {

    memset(head, -1, sizeof(head));

    cnt_E = 0;

}

// 单向加边即可：左边 -> 右边

void addEdge(int u, int v) {

    e[cnt_E].to = v;

    e[cnt_E].next = head[u];

    head[u] = cnt_E++;

}

// =================算法核心=================

/*

 * 函数: dfs

 * 功能: 尝试给左边的点 u 找一个匹配

 * 返回: 是否成功找到/腾挪出位置

 */

bool dfs(int u) {

    // 遍历 u 能到达的所有右边点

    for (int i = head[u]; i != -1; i = e[i].next) {
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        int v = e[i].to;

        

        // 如果这一轮还没问过点 v

        if (!vis[v]) {

            vis[v] = true; // 标记已问过

            

            // 核心逻辑:

            // 1. v 还没匹配 (match[v] == 0) -> 直接配对

            // 2. v 已经匹配了，但 v 的原配 (match[v]) 能找到其他下家 -> 腾位置

            if (match[v] == 0 || dfs(match[v])) {

                match[v] = u; // 建立匹配关系: v 的对象是 u

                return true;

            }

        }

    }

    return false;

}

/*

 * 函数: hungarian

 * 功能: 计算最大匹配数

 * 参数: n_left 左边集合的节点数量 (编号 1 ~ n_left)

 */

int hungarian(int n_left) {

    int ans = 0;

    memset(match, 0, sizeof(match)); // 初始化匹配情况

    

    // 遍历左边集合的每一个点，尝试给它找对象

    for (int i = 1; i <= n_left; i++) {

        memset(vis, 0, sizeof(vis)); // 【重要】每次尝试前，必须清空 vis

        if (dfs(i)) {

            ans++;

        }

    }

    return ans;

}

// =================使用案例=================

int main() {

    // 假设输入: 左边点数 n，右边点数 m，边数 k

    int n, m, k;

    

    while (cin >> n >> m >> k) {

        initList();

        

        for (int i = 0; i < k; i++) {

            int u, v;

            cin >> u >> v;

            

            // 这里的处理取决于题目给的编号

            // 情况A: 左边 1~n, 右边 1~m。通常为了区分，右边存在图里时有时需要 +n?

            // 但匈牙利算法比较灵活，只要 addEdge(u, v) 里的 u 和 v 不冲突即可。

            // 常用技巧: 左边 1~n, 右边直接存 1~m (逻辑上分开), 或者右边存 n+1 ~ n+m
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Dinic版  

            // 

            // 假如题目给的是: u(1~n) 和 v(1~m) 有边:

            // 只需要保证 match 数组够大能存下 v 的编号即可。

            addEdge(u, v); 

        }

        // 核心调用

        cout << hungarian(n) << endl;

    }

    return 0;

}
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#include <iostream>

#include <cstring>

#include <queue>

#include <algorithm>

using namespace std;

// ================== 参数配置 ==================

// 二分图匹配中：

// MAXN >= 左边点数 + 右边点数 + 2 (源点+汇点)

// MAXM >= (左边点数 + 右边点数 + 题目给出的边数) * 2 (反向边)

const int MAXN = 2005;   // 假设左1000 + 右1000 + 2

const int MAXM = 200005; // 假设边比较多

const int INF = 0x3f3f3f3f;

// ================== 链式前向星结构 ==================

struct Edge {

    int to, w, next;

} e[MAXM];

int head[MAXN];

int cnt_E = 0; // 这里的 cnt_E 最好初始化为 0 或 -1，配合 memset head -1 使用

// Dinic特需数组

int dep[MAXN]; 

int cur[MAXN]; 

// 初始化函数

void init() {

    memset(head, -1, sizeof(head));

    cnt_E = 0;

}

// 加边函数

void addEdge(int u, int v, int w) {

    e[cnt_E].to = v;

    e[cnt_E].w = w;
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    e[cnt_E].next = head[u];

    head[u] = cnt_E++;

}

// 对外调用的加边函数 (正向边w，反向边0)

void addFlowEdge(int u, int v, int w) {

    addEdge(u, v, w); 

    addEdge(v, u, 0); 

}

// ================== Dinic 核心部分 (逻辑不变) ==================

bool bfs(int S, int T) {

    memset(dep, -1, sizeof(dep));

    queue<int> q;

    

    dep[S] = 0;

    q.push(S);

    

    // 这里的 cur 初始化也可以放在 dinic 函数里，这里写也没问题

    memcpy(cur, head, sizeof(head)); 

    while (!q.empty()) {

        int u = q.front();

        q.pop();

        

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            int w = e[i].w;

            

            if (w > 0 && dep[v] == -1) {

                dep[v] = dep[u] + 1;

                q.push(v);

            }

        }

    }

    return dep[T] != -1;

}

int dfs(int u, int limit, int T) {

    if (u == T || limit == 0) return limit;

    

    int flow = 0;

    

    for (int &i = cur[u]; i != -1; i = e[i].next) {

        int v = e[i].to;

        int w = e[i].w;

        

        if (dep[v] == dep[u] + 1 && w > 0) {

            int f = dfs(v, min(limit, w), T);

            

            if (f > 0) {

                e[i].w -= f;       
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                e[i ^ 1].w += f;   

                flow += f;         

                limit -= f;        

                

                if (limit == 0) break;

            }

        }

    }

    return flow;

}

int dinic(int S, int T) {

    int max_flow = 0;

    while (bfs(S, T)) {

        max_flow += dfs(S, INF, T);

    }

    return max_flow;

}

// ================== Main: 二分图建图逻辑 ==================

int main() {

    // 优化输入输出速度

    ios::sync_with_stdio(false);

    cin.tie(0);

    int n, m, k; // n:左边点数, m:右边点数, k:给定的边数

    

    // 读入数据

    if (cin >> n >> m >> k) {

        init(); // 必须初始化！

        // 1. 设定超级源点和超级汇点

        // 习惯上：源点 S=0，左边点 1~n，右边点 n+1~n+m，汇点 T=n+m+1

        int S = 0;

        int T = n + m + 1;

        // 2. 建立 源点 -> 左边点 的边 (容量1)

        for (int i = 1; i <= n; i++) {

            addFlowEdge(S, i, 1);

        }

        // 3. 建立 右边点 -> 汇点 的边 (容量1)

        for (int i = 1; i <= m; i++) {

            // 右边第 i 个点，在图中的真实编号是 i + n

            addFlowEdge(i + n, T, 1);

        }

        // 4. 建立由于题目给出的 左边 -> 右边 的边 (容量1)

        for (int i = 0; i < k; i++) {

            int u, v;

            cin >> u >> v;

            // 题目输入 u v，表示左边 u 和 右边 v 连边

            // 同样，右边的 v 在图中编号为 v + n
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EK算法版  

            if (u <= n && v <= m) { // 加上边界检查是个好习惯

                addFlowEdge(u, v + n, 1);

            }

        }

        // 5. 跑 Dinic

        cout << dinic(S, T) << endl;

    }

    return 0;

}
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#include <iostream>

#include <cstring>

#include <queue>

#include <algorithm>

using namespace std;

// =================配置区域=================

// V_MAX 要开到: 左边点数 + 右边点数 + 2 (源汇点)

const int V_MAX = 2005; 

// E_MAX 要开到: (源点连左边的边 + 中间连线 + 右边连汇点的边) * 2

const int E_MAX = (1005 + 10005 + 1005) * 2; 

const int INF = 0x3f3f3f3f;

struct Edge {

    int to, w, next; 

} e[E_MAX];

int head[V_MAX], cnt_E = 0;

int pre[V_MAX]; // 记录前驱边

int inc[V_MAX]; // 记录流量瓶颈

int vis[V_MAX]; // BFS 访问标记

void initList() {

    memset(head, -1, sizeof(head));

    cnt_E = 0;

}

// 基础加边

void addEdge(int u, int v, int w) {

    e[cnt_E].to = v;

    e[cnt_E].w = w;

    e[cnt_E].next = head[u];

    head[u] = cnt_E++;

}
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// 网络流专用加边 (正反向)

void addFlowEdge(int u, int v, int w) {

    addEdge(u, v, w); // 正向

    addEdge(v, u, 0); // 反向

}

// =================算法核心 (EK)=================

// 这部分和通用最大流板子完全一样，可以直接抄

bool bfs(int s, int t) {

    memset(vis, 0, sizeof(vis));

    queue<int> q;

    q.push(s);

    vis[s] = 1;

    inc[s] = INF;

    

    while (!q.empty()) {

        int u = q.front(); q.pop();

        for (int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            int w = e[i].w;

            if (!vis[v] && w > 0) {

                vis[v] = 1;

                inc[v] = min(inc[u], w);

                pre[v] = i;

                q.push(v);

                if (v == t) return true;

            }

        }

    }

    return false;

}

int EK(int s, int t) {

    int max_flow = 0;

    while (bfs(s, t)) {

        int k = inc[t];

        max_flow += k;

        int u = t;

        while (u != s) {

            int i = pre[u];

            e[i].w -= k;

            e[i ^ 1].w += k;

            u = e[i ^ 1].to;

        }

    }

    return max_flow;

}

// =================二分图特化建图=================

/*

 * 函数: solveBipartite
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 * 参数: 

 *   n: 左边点数量 (编号 1~n)

 *   m: 右边点数量 (编号 1~m)

 *   edges: 题目给的边列表 vector<pair<int,int>>

 * 说明: 

 *   如果不喜欢传 vector，可以直接在 main 函数里循环调用 addFlowEdge

 */

void solveBipartite(int n, int m) {

    initList();

    

    int S = 0;             // 源点通常设为 0

    int T = n + m + 1;     // 汇点设为总点数 + 1

    

    // 1. 建立 S -> 左边点 (容量1)

    for (int i = 1; i <= n; i++) {

        addFlowEdge(S, i, 1);

    }

    

    // 2. 建立 右边点 -> T (容量1)

    // 注意: 右边点在图中的实际编号通常处理为 n+j (避免和左边点冲突)

    for (int j = 1; j <= m; j++) {

        addFlowEdge(n + j, T, 1);

    }

    

    // 3. 建立 左边点 -> 右边点 (容量1) - 读取输入数据

    int k; // 边数

    cin >> k;

    for(int i=0; i<k; i++) {

        int u, v;

        cin >> u >> v;

        // u 是左边点(1~n), v 是右边点(1~m)

        // 连边时，v 要变成 n+v 以区分

        if(u <= n && v <= m) { 

             addFlowEdge(u, n + v, 1);

        }

    }

    // 4. 跑最大流

    cout << EK(S, T) << endl;

}

// =================使用案例=================

int main() {

    // 假设输入: 左边点数 n，右边点数 m

    // 后面紧跟 k 行边 (u, v)

    int n, m;

    while (cin >> n >> m) {

        solveBipartite(n, m);

    }

    return 0;

}
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有向无环图哈密顿  

//判断没有环路没有重边（本算法使用dfs方法允许有重边）的有向图是否存在哈密顿路径

//使用链式前向星保存图

//有机会可以补充一下使用其他方法找寻拓扑排序的算法

#include<stdio.h>

#include<string.h>

#include<string.h>

#include<queue>

#include<algorithm>

#define MAX_VERTEX 100005

#define MAX_ARC 200005

using namespace std;

//链式前向星保存边信息，但没有权重了

struct Arc {

    int toV;

    int next_index;

}ARCS[MAX_ARC];

int ARC_CNT;

//由于递归调用dfs_visit，为了节省栈空间，尽量少传参数

int N;

bool IS_VISIT[MAX_VERTEX];

int A_HEAD[MAX_VERTEX];

//倒序的拓扑排序序列

int TOPOLOGICAL_LIST[MAX_VERTEX];

int TP_CNT;

//使用dfs方法求出拓扑排序，并判断是否有哈密顿路径

bool topological_sort_dfs();

inline void add_arc(int from, int to);

void dfs_visit(int v);

//判断两顶点之间是否有弧

bool has_arc(int from, int to);

int main() {

    int t, u, v, m = -1;

    scanf("%d", &t);

    for(int group = 0; group < t; group++) {

        scanf("%d%d", &N, &m);

        ARC_CNT = 0;

        memset(A_HEAD, 0, (N + 1) * sizeof(A_HEAD[0]));
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        for(int arc_line = 0; arc_line < m; arc_line++) {

            scanf("%d%d", &u, &v);

            add_arc(u, v);

        }

        if(topological_sort_dfs()) {

            printf("yy\n");

        }else {

            printf("nn\n");

        }

    }

}

inline void add_arc(int from, int to) {

    ARC_CNT++;

    ARCS[ARC_CNT].toV = to;

    ARCS[ARC_CNT].next_index = A_HEAD[from];

    A_HEAD[from] = ARC_CNT;

}

bool topological_sort_dfs() {

    memset(IS_VISIT, 0, (N + 1) * sizeof(IS_VISIT[0]));

    TP_CNT = 0;

    for(int i = 1; i <= N; i++) {

        dfs_visit(i);

    }

    for(TP_CNT--; TP_CNT; TP_CNT--) {

        if(!has_arc(TOPOLOGICAL_LIST[TP_CNT], TOPOLOGICAL_LIST[TP_CNT - 1])) {

            return 0;

        }

    }

    return 1;

}

void dfs_visit(int v) {

    if(IS_VISIT[v]) {

        return;

    }

    IS_VISIT[v] = 1;

    for(int arc_now = A_HEAD[v]; arc_now; arc_now = ARCS[arc_now].next_index) {

        dfs_visit(ARCS[arc_now].toV);

    }

    // 最后获得倒序的拓扑序列

    TOPOLOGICAL_LIST[TP_CNT++] = v;

}

bool has_arc(int from, int to) {

    for(int arc_now = A_HEAD[from]; arc_now; arc_now = ARCS[arc_now].next_index) {

        if(ARCS[arc_now].toV == to) {

            return 1;
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以下都基于链式前向星  

1. LCA (最近公共祖先) —— 倍增法  

对应问题：求树上任意两点距离、判断两点路径上包含什么边。

简单讲解：

1. 先跑一遍 BFS/DFS，算出每个点的深度 depth，以及每个点“向上跳  步（即父节点）”是谁。

2. 利用倍增公式 fa[u][i] = fa[ fa[u][i-1] ][ i-1 ]（跳  步等于先跳  再跳 ），预处

理出所有  的祖先。

3. 查询时，先把两点跳到同一高度，然后一起往上跳，直到相遇。

        }

    }

    return 0;

}
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// ==== 在你的全局变量区添加 ====

const int MAX_LOG = 20; // 2^20 > 10000，够用了

int parent[N][MAX_LOG]; // parent[u][i] 表示 u 向上跳 2^i 步到达的祖先

int depth[N];           // 深度

// ==== 1. 预处理 (BFS版本，防爆栈) ====

void bfs_lca(int root) {

    memset(depth, 0, sizeof(depth));

    memset(parent, 0, sizeof(parent));

    

    queue<int> q;

    q.push(root);

    depth[root] = 1;

    parent[root][0] = root; // 根节点的父亲设为自己或0均可，看习惯

    while(!q.empty()) {

        int u = q.front(); q.pop();

        // 遍历 u 的所有邻居

        for(int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            if(depth[v] > 0) continue; // 访问过了（因为是树，访问过就是父亲）

            

            depth[v] = depth[u] + 1;

            parent[v][0] = u; // 2^0 步就是父节点

            

            // 【核心】倍增预处理：v的2^j祖先 = v的2^(j-1)祖先 的 2^(j-1)祖先

            for(int j = 1; j < MAX_LOG; j++) {

                parent[v][j] = parent[ parent[v][j-1] ][ j-1 ];

            }

            q.push(v);

        }

    }

}
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2. SPFA —— 判负环 / 差分约束  

对应问题：图中是否有负权回路？不等式组是否有解？带负权边的最短路。

简单讲解：

基于队列的 BFS。我更新了你的距离，你就入队去更新你的邻居。

判负环原理：如果一个点进出队列被更新了  次以上，说明在绕圈圈（负环）。

// ==== 2. 查询函数 ====

int lca(int x, int y) {

    if(depth[x] < depth[y]) swap(x, y); // 保证 x 是深度较深的那个

    

    // 1. 把 x 跳到和 y 同一层

    for(int i = MAX_LOG - 1; i >= 0; i--) {

        if(depth[ parent[x][i] ] >= depth[y]) {

            x = parent[x][i];

        }

    }

    

    if(x == y) return x; // 如果跳上来发现重合了，说明 y 本来就是 x 的祖先

    

    // 2. x 和 y 一起往上跳，直到跳到 LCA 的下一层

    for(int i = MAX_LOG - 1; i >= 0; i--) {

        if(parent[x][i] != parent[y][i]) {

            x = parent[x][i];

            y = parent[y][i];

        }

    }

    

    return parent[x][0]; // 再往上跳一步就是 LCA

}

// 使用方法：

// 1. 建好树 (addEdge)

// 2. bfs_lca(根节点);

// 3. int ans = lca(u, v);
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// ==== 在你的全局变量区添加 ====

int dist[N];

bool in_queue[N]; // 是否在队列中

int cnt[N];       // 记录每个点入队/被更新的次数

// ==== 返回 true 表示发现负环，false 表示正常 ====

bool spfa(int start, int n) {

    memset(dist, 0x3f, sizeof(dist));

    memset(in_queue, 0, sizeof(in_queue));

    memset(cnt, 0, sizeof(cnt));

    

    queue<int> q;

    q.push(start);
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3. Tarjan —— 强连通分量 (SCC)  

对应问题：缩点。把有向有环图变成有向无环图(DAG)。

简单讲解：

DFS 遍历图。 dfn  记录第一次访问的时间， low  记录能回溯到的最早时间。

用栈记录访问过的点。

如果 dfn[u] == low[u]，说明 u  是这个团伙（SCC）的头目，栈里 u  之上的点都是这个团伙的。

    dist[start] = 0;

    in_queue[start] = true;

    

    while(!q.empty()) {

        int u = q.front(); q.pop();

        in_queue[u] = false;

        

        for(int i = head[u]; i != -1; i = e[i].next) {

            int v = e[i].to;

            int w = e[i].w;

            

            // 松弛操作

            if(dist[v] > dist[u] + w) {

                dist[v] = dist[u] + w;

                cnt[v] = cnt[u] + 1; // 记录路径长度(边数)

                

                // 【核心】如果一条路径经过了 >= n 个点，说明有负环

                if(cnt[v] >= n) return true; 

                

                if(!in_queue[v]) {

                    q.push(v);

                    in_queue[v] = true;

                }

            }

        }

    }

    return false; // 无负环

}
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// ==== 在你的全局变量区添加 ====

int dfn[N], low[N], timer;

int stk[N], top;      // 手写栈

bool in_stack[N];     // 是否在栈中

int scc_id[N], scc_cnt; // 每个点所属的连通分量ID，连通分量总数

void tarjan(int u) {

    dfn[u] = low[u] = ++timer;

    stk[++top] = u;

    in_stack[u] = true;

    

    for(int i = head[u]; i != -1; i = e[i].next) {
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4. 树的直径  

对应问题：树上最远两点的距离。

简单讲解：两次 BFS/DFS。第一次随便从一点出发找最远点 P，第二次从 P 出发找最远点 Q。P 到 Q 的距离就
是直径。

        int v = e[i].to;

        

        if(!dfn[v]) { // 如果没访问过

            tarjan(v);

            low[u] = min(low[u], low[v]);

        } 

        else if(in_stack[v]) { // 如果访问过且还在栈里(说明是回边，构成了环)

            low[u] = min(low[u], dfn[v]);

        }

    }

    

    // 【核心】发现一个强连通分量的根

    if(dfn[u] == low[u]) {

        scc_cnt++;

        int y;

        do {

            y = stk[top--]; // 弹栈

            in_stack[y] = false;

            scc_id[y] = scc_cnt; // 标记属于哪个分量

            // 这里可以做缩点后的逻辑，比如 scc_val[scc_cnt] += val[y]

        } while(u != y);

    }

}

// 使用方法：

// 循环所有点，如果 !dfn[i] 则调用 tarjan(i); 

// 因为图可能不连通

// for(int i=1; i<=n; i++) if(!dfn[i]) tarjan(i);
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// ==== 全局变量 ====

int max_dist, end_point;

// 需要复用 dfs，所以多传一个参数: current_dist

void dfs_diameter(int u, int fa, int current_dist) {

    if (current_dist > max_dist) {

        max_dist = current_dist;

        end_point = u; // 记录最远的点

    }

    

    for (int i = head[u]; i != -1; i = e[i].next) {

        int v = e[i].to;

        int w = e[i].w;

        if (v == fa) continue; // 只要不走回头路即可

        dfs_diameter(v, u, current_dist + w);

    }
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5. 最小费用最大流 (MCMF)  

注意：这个算法必须修改你的 Edge  结构体，因为除了权值（即费用 w），还需要容量 cap。

对应问题：二分图带权匹配、货物调配成本最低。

原理：Edmonds-Karp 算法的变种。把 EK 里的 BFS（找最短跳数路径）改成 SPFA（找费用最小的路径）。

对比：

普通最大流 (Edmonds-Karp)：用 BFS 找路径。BFS 只看跳数（经过几条边），它可能会傻乎乎地先选一条
“容量大但死贵”的路，导致最后算出来的钱不是最少的。

最小费用最大流：用 SPFA 找路径。SPFA 是在找“最短路”。

在这里，边的“长度” = 费用。

SPFA 找到的“最短路” = “最便宜的路径”。

}

// 使用方法：

// 1. max_dist = 0; dfs_diameter(1, 0, 0); // 从1出发找最远点 P (存入 end_point)

// 2. int P = end_point; 

// 3. max_dist = 0; dfs_diameter(P, 0, 0); // 从 P 出发找最远点 Q

// 4. cout << max_dist; // 直径
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#include <iostream>

#include <cstring>

#include <queue>

#include <algorithm>

using namespace std;

// ==== 0. 参数设置 ====

const int N = 5005;   // 最大点数

const int M = 100005; // 最大边数 (注意：要开题目原边数的2倍，因为有反向边)

const int INF = 0x3f3f3f3f;

// ==== 1. 链式前向星 ====

struct Edge {

    int to, nxt;

    int cap;  // 容量 (Capacity)

    int cost; // 费用 (Cost)

} e[M];

int head[N], cnt = 0; // cnt 从 0 或 1 开始均可，这里用 0，方便 i^1 运算

// 初始化 (多组数据必写)

void init() {

    memset(head, -1, sizeof(head));

    cnt = 0;

}

// 加边：同时建立【正向边】和【反向边】
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void add(int u, int v, int cap, int cost) {

    // 正向边：容量为 cap，费用为 cost

    e[cnt] = {v, head[u], cap, cost}; head[u] = cnt++;

    

    // 反向边：容量为 0 (初始不可逆流)，费用为 -cost (反悔退钱)

    e[cnt] = {u, head[v], 0, -cost};  head[v] = cnt++;

}

// ==== 2. SPFA / MCMF 核心变量 ====

int d[N];      // dist: 到源点的最小费用

int incf[N];   // incf: 增广路上各点的"剩余流量限制" (incremental flow)

int pre[N];    // pre: 记录前驱节点 (用于回溯路径)

int pree[N];   // pree: 记录前驱边的索引 (edge index)

bool vis[N];   // in_queue: 是否在队列中

// ==== 3. SPFA: 寻找费用最小的增广路 ====

bool spfa(int s, int t) {

    memset(d, 0x3f, sizeof(d)); // 费用初始化为无穷大

    memset(vis, 0, sizeof(vis));

    

    queue<int> q;

    q.push(s);

    vis[s] = true;

    d[s] = 0;

    incf[s] = INF; // 源点有无穷多的流量可以流出

    

    while (!q.empty()) {

        int u = q.front(); q.pop();

        vis[u] = false;

        

        for (int i = head[u]; i != -1; i = e[i].nxt) {

            int v = e[i].to;

            int c = e[i].cap;

            int w = e[i].cost;

            

            // 核心条件：1. 还有剩余容量 (路没堵死)  2. 费用更少 (更便宜)

            if (c > 0 && d[v] > d[u] + w) {

                d[v] = d[u] + w;          // 更新最小费用

                incf[v] = min(incf[u], c); // 流量受限于路径中最窄的管子

                pre[v] = u;               // 记录我是从 u 来的

                pree[v] = i;              // 记录我是走第 i 条边来的

                

                if (!vis[v]) {

                    q.push(v);

                    vis[v] = true;

                }

            }

        }

    }

    return d[t] != INF; // 如果 d[t] 还是 INF，说明没路了

}

// ==== 4. 主函数: 累加流量和费用，更新残量网络 ====
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// maxf: 最大流结果, minc: 最小费用结果

void MCMF(int s, int t, int &maxf, int &minc) {

    maxf = 0; minc = 0;

    

    // 只要能找到更便宜的路 (spfa 返回 true)，就接着流

    while (spfa(s, t)) {

        int f = incf[t]; // 这一趟增广路能流过的最大流量

        

        maxf += f;

        minc += f * d[t]; // 这一趟的总花费 = 流量 * 单价

        

        // 【关键】倒着往回爬，更新正反向边的容量

        int x = t;

        while (x != s) {

            int i = pree[x]; // 找到通向 x 的那条边

            

            e[i].cap -= f;   // 正向边流量减少

            e[i ^ 1].cap += f; // 反向边流量增加 (i^1 能自动找到反向边索引)

            

            x = pre[x];      // 爬回前驱节点

        }

    }

}

// 使用示例

/*

int main() {

    init();

    // 读入 u, v, cap, cost ...

    // add(u, v, cap, cost);

    int max_flow, min_cost;

    MCMF(start_node, end_node, max_flow, min_cost);

    cout << max_flow << " " << min_cost << endl;

}

*/
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八、计算几何  
超全版  

#include <bits/stdc++.h>

using namespace std;

#define inf 1e100

#define eps 1e-8

//用于浮点数正负判断，根据题目精度修改

const double pi = acos(-1.0); //圆周率

int sgn(double x)

{

    if (fabs(x) < eps)

        return 0;

    if (x < 0)

        return -1;

    return 1;

} //判断浮点数正负

double sqr(double x) { return x * x; } //距离等运算涉及大量平方，简便

//使用Point时注意部分函数是返回新Point而非修改本身值

struct Point

{

    double x, y;

    /*构造函数*/

    Point() {}

    Point(double xx, double yy)

    {

        x = xx;

        y = yy;

    }

    /*重载一些点的基础运算符*/

    bool operator==(Point b) const

    {

        return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;

    }

    bool operator<(Point b) const

    {

        return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;

    }

    Point operator-(const Point &b) const

    {

        return Point(x - b.x, y - b.y);

    }

    Point operator+(const Point &b) const

    {

        return Point(x + b.x, y + b.y);

    }

    Point operator*(const double &k) const

    {

        return Point(x * k, y * k);

    }
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    Point operator/(const double &k) const

    {

        return Point(x / k, y / k);

    }

    //叉积

    double operator^(const Point &b) const

    {

        return x * b.y - y * b.x;

    }

    //点积

    double operator*(const Point &b) const

    {

        return x * b.x + y * b.y;

    }

    /*当前点为p，求角apb大小*/

    double rad(Point a, Point b)

    {

        Point p = *this;

        return fabs(atan2(fabs((a - p) ^ (b - p)), (a - p) * (b - p)));

    }

    /*逆时针旋转90度*/

    Point rotleft()

    {

        return Point(-y, x);

    }

    /*顺时针旋转90度*/

    Point rotright()

    {

        return Point(y, -x);

    }

    //两点距离

    double dis(Point p)

    {

        return sqrt(sqr(x - p.x) + sqr(y - p.y));

    }

    //原点距离

    double abs()

    {

        return sqrt(abs2());

    }

    double abs2()

    {

        return sqr(x) + sqr(y);

    }

    //改变向量长度

    Point trunc(double r)

    {

        double l = abs();

        if (!sgn(l))

            return *this;

        r /= l;

        return Point(x * r, y * r);

    }
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    //单位化

    Point unit() { return *this / abs(); }

    // IO

    void input()

    {

        scanf("%lf%lf", &x, &y);

    }

    void output()

    {

        printf("%.7f %.7f\n", x, y);

    }

    //绕着p点逆时针旋转angle

    Point rotate(Point p, double angle)

    {

        Point v = (*this) - p;

        double c = cos(angle), s = sin(angle);

        return Point(p.x + v.x * c - v.y * s, p.y + v.x * s + v.y * c);

    }

};

struct Line

{

    //两点确定直线

    Point s, e;

    Line() {}

    Line(Point ss, Point ee)

    {

        s = ss;

        e = ee;

    }

    void input()

    {

        s.input();

        e.input();

    }

    //点在线段上

    bool checkPS(Point p)

    {

        return sgn((p - s) ^ (e - s)) == 0 && sgn((p - s) * (p - e)) <= 0;

    }

    //直线平行

    bool parallel(Line v)

    {

        return sgn((e - s) ^ (v.e - v.s)) == 0;

    }

    //点和直线关系

    // 1  在左侧

    // 2  在右侧

    // 3  在直线上

    int relation(Point p)

    {

        int c = sgn((p - s) ^ (e - s));

        if (c < 0)

            return 1;
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        else if (c > 0)

            return 2;

        else

            return 3;

    }

    //线段相交

    // 2 规范相交

    // 1 非规范相交

    // 0 不相交

    int checkSS(Line v)

    {

        int d1 = sgn((e - s) ^ (v.s - s));

        int d2 = sgn((e - s) ^ (v.e - s));

        int d3 = sgn((v.e - v.s) ^ (s - v.s));

        int d4 = sgn((v.e - v.s) ^ (e - v.s));

        if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2)

            return 2;

        return (d1 == 0 && sgn((v.s - s) * (v.s - e)) <= 0) ||

               (d2 == 0 && sgn((v.e - s) * (v.e - e)) <= 0) ||

               (d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||

               (d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);

    }

    //直线和线段相交

    // 2 规范相交

    // 1 非规范相交

    // 0 不相交

    int checkLS(Line v)

    {

        int d1 = sgn((e - s) ^ (v.s - s));

        int d2 = sgn((e - s) ^ (v.e - s));

        if ((d1 ^ d2) == -2)

            return 2;

        return (d1 == 0 || d2 == 0);

    }

    //两直线关系

    // 0 平行

    // 1 重合

    // 2 相交

    int checkLL(Line v)

    {

        if ((*this).parallel(v))

            return v.relation(s) == 3;

        return 2;

    }

    //直线交点

    Point isLL(Line v)

    {

        double a1 = (v.e - v.s) ^ (s - v.s);

        double a2 = (v.e - v.s) ^ (e - v.s);

        return Point((s.x * a2 - e.x * a1) / (a2 - a1), (s.y * a2 - e.y * a1) / (a2 - 

a1));

    }

    //点到直线的距离
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    double disPL(Point p)

    {

        return fabs((p - s) ^ (e - s)) / (s.dis(e));

    }

    //点到线段的距离

    double disPS(Point p)

    {

        if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0)

            return min(p.dis(s), p.dis(e));

        return disPL(p);

    }

    //两线段距离

    double disSS(Line v)

    {

        return min(min(disPS(v.s), disPS(v.e)), min(v.disPS(s), v.disPS(e)));

    }

    //点在直线上投影

    Point proj(Point p)

    {

        return s + (((e - s) * ((e - s) * (p - s))) / ((e - s).abs2()));

    }

    //向垂直有向直线的左侧移动x

    Line push(double x)

    {

        Point tmp = e - s;

        tmp = tmp.rotleft().trunc(x);

        Point ss = s + tmp;

        Point ee = e + tmp;

        return {ss, ee};

    }

};

//多边形面积，需保证A逆时针

double area(vector<Point> A)

{

    double ans = 0;

    for (int i = 0; i < A.size(); i++)

        ans += (A[i] ^ A[(i + 1) % A.size()]);

    return ans / 2;

}

int contain(vector<Point> A, Point q)

{ // 2 内部 1 边界 0 外部

    int pd = 0;

    A.push_back(A[0]);

    for (int i = 1; i < A.size(); i++)

    {

        Point u = A[i - 1], v = A[i];

        if (Line(u, v).checkPS(q))

            return 1;

        if (sgn(u.y - v.y) > 0)

            swap(u, v);

        if (sgn(u.y - q.y) >= 0 || sgn(v.y - q.y) < 0)

            continue;
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        if (sgn((u - v) ^ (q - v)) < 0)

            pd ^= 1;

    }

    return pd << 1;

}

//凸包

vector<Point> ConvexHull(vector<Point> A, int flag = 1)

{ // flag=0 不严格 flag=1 严格

    int n = A.size();

    vector<Point> ans(n * 2);

    sort(A.begin(), A.end());

    int now = -1;

    for (int i = 0; i < A.size(); i++)

    {

        while (now > 0 && sgn((ans[now] - ans[now - 1]) ^ (A[i] - ans[now - 1])) < 

flag)

            now--;

        ans[++now] = A[i];

    }

    int pre = now;

    for (int i = n - 2; i >= 0; i--)

    {

        while (now > pre && sgn((ans[now] - ans[now - 1]) ^ (A[i] - ans[now - 1])) < 

flag)

            now--;

        ans[++now] = A[i];

    }

    ans.resize(now);

    return ans;

}

//凸包周长

double convexC(vector<Point> A)

{

    double ans = 0;

    for (int i = 0; i < A.size() - 1; i++)

    {

        ans += A[i].dis(A[i + 1]);

    }

    ans += A[A.size() - 1].dis(A[0]);

    return ans;

}

//凸包直径(最远点对)

double convexDiameter(vector<Point> A)

{

    int now = 0, n = A.size();

    double ans = 0;

    for (int i = 0; i < A.size(); i++)

    {

        now = max(now, i);

        while (1)

        {

            double k1 = A[i].dis(A[now % n]), k2 = A[i].dis(A[(now + 1) % n]);
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计算几何板子使用说明:

1. 基础设置与精度

精度控制： eps  用于浮点误差修正， sgn(x)  返回 1, 0, -1。所有涉及判断相等的逻辑（如 ==）底层都依
赖 sgn。

常数： inf  为无穷大， pi  为圆周率。

            ans = max(ans, max(k1, k2));

            if (k2 > k1)

                now++;

            else

                break;

        }

    }

    return ans;

}

// 最近点对, 先要按照 x 坐标排序

double closepoint(vector<Point> &A, int l, int r)

{

    if (r - l <= 5)

    {

        double ans = 1e20;

        for (int i = l; i <= r; i++)

            for (int j = i + 1; j <= r; j++)

                ans = min(ans, A[i].dis(A[j]));

        return ans;

    }

    int mid = l + r >> 1;

    double ans = min(closepoint(A, l, mid), closepoint(A, mid + 1, r));

    vector<Point> B;

    for (int i = l; i <= r; i++)

        if (abs(A[i].x - A[mid].x) <= ans)

            B.push_back(A[i]);

    sort(B.begin(), B.end(), [&](Point k1, Point k2)

         { return k1.y < k2.y; });

    for (int i = 0; i < B.size(); i++)

        for (int j = i + 1; j < B.size() && B[j].y - B[i].y < ans; j++)

            ans = min(ans, B[i].dis(B[j]));

    return ans;

}

int main(){

    int n=getint();

    for(int i=0;i<n;i++){

        double x=getdb(),y=getdb();

        p.push_back((Point){x,y});

    }

    ans=ConvexHull(p,1);

    printf("%.6f\n",convexDiameter(ans));

    return 0;

}
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2. Point 结构体 (点/向量)

定义：既代表点 ，也代表向量 。

运算符重载：

+ , - , *  (数乘), /  (数除)：向量基本运算。

== , <：用于排序（先x后y）和去重。

^  (叉积)： a^b。结果  表示 b  在 a  逆时针方向；结果为面积/2。

*  (点积)： a*b。用于求投影、夹角余弦。

常用函数：

dis(p)：两点距离。

abs()  / unit()：向量模长 / 单位向量。

rotate(p, angle)：绕点 p  逆时针旋转 angle  (弧度制)。

rotleft()  / rotright()：快速旋转90度。

3. Line 结构体 (直线/线段)

定义：由两点 s  (start), e  (end) 确定。向量方向 s -> e。

关系判断 (返回值 int)：

relation(p)：点与直线关系。1:左侧, 2:右侧, 3:直线上。

checkSS(v)：线段相交。2:规范相交(交点在线段内), 1:非规范(端点相交), 0:不相交。

checkLS(v)：直线与线段相交。

checkLL(v)：直线与直线关系。0:平行, 1:重合, 2:相交。

计算函数：

isLL(v)：返回两直线交点 Point。

disPL(p)  / disPS(p)：点到直线 / 点到线段的距离。

proj(p)：点在直线上的投影点。

4. 多边形与进阶算法 (Global Functions)

area(vector<Point> A)：求多边形面积（需保证点按逆时针或顺时针顺序）。

contain(A, q)：点 q  是否在多边形 A  内。2:内部, 1:边界, 0:外部。

ConvexHull(A, flag)：求凸包（Andrew算法）。

输入：点集 A。

参数： flag=1  严格凸包（边上无多余点）， flag=0  不严格。

输出：返回构成凸包的点集（逆时针顺序）。

convexDiameter(A)：旋转卡壳求凸包直径（最远点对距离）。输入必须是凸包。

closepoint(A, l, r)：分治法求最近点对距离。

注意：调用前必须先对 A 按 x 坐标排序！ sort(A.begin(), A.end());

调用： closepoint(A, 0, n-1)。
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逻辑核心

1. 叉积 (Cross Product)： 。

若 ，向量  在  逆时针侧。

几何意义：两向量构成平行四边形面积（有向）。

2. 点积 (Dot Product)： 。

若 ，垂直。

3. 线段相交 (跨立实验)：

快速排斥：判断矩形边界是否相交。

跨立：线段A的端点在线段B两侧 且 线段B的端点在线段A两侧（用叉积符号判断）。

4. 凸包 (Andrew)：

排序：先x后y。

下凸壳：从左到右遍历，若新点导致拐向变为顺时针（叉积<0），则弹栈。

上凸壳：从右到左遍历，同理。

5. 最近点对：

分治：分为左右两半，取 。

合并：检查中线附近  范围内的点，按  排序后，每个点只需检查后  个点。

代码使用示例 (Main)

 

int main(){

    int n;

    scanf("%d", &n); // 也可以用 cin

    vector<Point> p(n);

    for(int i = 0; i < n; i++) {

        p[i].input(); // 或 scanf("%lf%lf", &p[i].x, &p[i].y);

    }

    // 1. 求凸包

    vector<Point> hull = ConvexHull(p, 1);

    

    // 2. 求凸包周长

    double perimeter = convexC(hull);

    

    // 3. 求凸包直径 (旋转卡壳)

    double diameter = convexDiameter(hull);

    

    // 4. 求最近点对 (务必先排序!)

    sort(p.begin(), p.end()); 

    double min_dist = closepoint(p, 0, n - 1);

    printf("Perimeter: %.2f\n", perimeter);

    return 0;

}
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叉积计算  

#include <iostream>

// 使用 long long 防止坐标相乘溢出，如果是浮点数题目请换成 double

typedef long long ll; 

using namespace std;

/**

 * 2D向量叉积计算函数

 * 

 * 参数说明:

 * (x0, y0), (x1, y1): 定义第一个向量 A = P0 - P1

 * (x2, y2), (x3, y3): 定义第二个向量 B = P2 - P3

 * 

 * 计算公式: (x0-x1)*(y2-y3) - (y0-y1)*(x2-x3)

 * 

 * 返回值:

 * > 0 : 向量A 逆时针旋转到 B (左拐)

 * < 0 : 向量A 顺时针旋转到 B (右拐)

 * = 0 : 向量A 与 B 共线 (平行)

 */

ll cp(ll x0, ll y0, ll x1, ll y1, ll x2, ll y2, ll x3, ll y3) {

    // 向量 A 的分量

    ll ux = x0 - x1;

    ll uy = y0 - y1;

    // 向量 B 的分量

    ll vx = x2 - x3;

    ll vy = y2 - y3;

    

    // 叉积核心公式: x1*y2 - x2*y1

    return ux * vy - uy * vx;

}

// 辅助函数：简单的判断方向并打印（仅用于演示或调试）

void check_dir(ll res) {

    if (res > 0) cout << "逆时针 (Left)" << endl;

    else if (res < 0) cout << "顺时针 (Right)" << endl;

    else cout << "共线 (Collinear)" << endl;

}

int main() {

    // 示例 1: 简单的正交向量

    // A = (1,0) - (0,0) = (1, 0)  指向右

    // B = (0,1) - (0,0) = (0, 1)  指向上

    // 右手定则，由右转向上的大拇指朝外，应该是正数（逆时针）

    ll res1 = cp(1, 0, 0, 0, 0, 1, 0, 0); 

    cout << "Case 1 Val: " << res1 << " -> "; 

    check_dir(res1);

    // 示例 2: 题目要求的向量减法顺序测试
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线段相交  

    // 假设 P0(4,4), P1(2,2) -> V1 = (2,2)

    // 假设 P2(4,2), P3(2,2) -> V2 = (2,0)

    // V1(2,2) 到 V2(2,0) 是顺时针转

    ll res2 = cp(4, 4, 2, 2, 4, 2, 2, 2);

    cout << "Case 2 Val: " << res2 << " -> ";

    check_dir(res2);

    return 0;

}
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#include <bits/stdc++.h>

using namespace std;

int t;

struct dd{

    long long x,y;

};

struct dd p[5];

long long cheng(struct dd a, struct dd b, struct dd c){

    return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);

}

int onseg(struct dd a, struct dd b, struct dd c){

    return (c.x >= min(a.x, b.x)) && (c.x <= max(a.x, b.x)) && (c.y >= min(a.y, b.y)) 

&& (c.y <= max(a.y, b.y));

}

int intersect(){

    long long d[5] = {0};

    d[1] = cheng(p[3], p[4], p[1]); d[1] != 0 ? d[1] = d[1]/abs(d[1]) : 0;

    d[2] = cheng(p[3], p[4], p[2]); d[2] != 0 ? d[2] = d[2]/abs(d[2]) : 0;

    d[3] = cheng(p[1], p[2], p[3]); d[3] != 0 ? d[3] = d[3]/abs(d[3]) : 0;

    d[4] = cheng(p[1], p[2], p[4]); d[4] != 0 ? d[4] = d[4]/abs(d[4]) : 0;

    if(d[1] * d[2] < 0 && d[3] * d[4] < 0) return 1;

    if(d[1] == 0 && onseg(p[3], p[4], p[1])) return 1;

    if(d[2] == 0 && onseg(p[3], p[4], p[2])) return 1;

    if(d[3] == 0 && onseg(p[1], p[2], p[3])) return 1;

    if(d[4] == 0 && onseg(p[1], p[2], p[4])) return 1;

    return 0;

}

int main(){

    scanf("%d", &t);

    while(t--){

        for(int i = 1; i <= 4; i++){
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另外的版本：

            scanf("%lld%lld", &p[i].x, &p[i].y);

        }

        if(intersect()) printf("Yes\n");

        else printf("No\n");

    }

    return 0;

}
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#include <bits/stdc++.h>

using namespace std;

struct Line {

    int x1;

    int y1;

    int x2;

    int y2;

};

 

bool intersection(const Line &l1, const Line &l2)

{

    //快速排斥实验

    if ((l1.x1 > l1.x2 ? l1.x1 : l1.x2) < (l2.x1 < l2.x2 ? l2.x1 : l2.x2) ||

        (l1.y1 > l1.y2 ? l1.y1 : l1.y2) < (l2.y1 < l2.y2 ? l2.y1 : l2.y2) ||

        (l2.x1 > l2.x2 ? l2.x1 : l2.x2) < (l1.x1 < l1.x2 ? l1.x1 : l1.x2) ||

        (l2.y1 > l2.y2 ? l2.y1 : l2.y2) < (l1.y1 < l1.y2 ? l1.y1 : l1.y2))

    {

        return false;

    }

    //跨立实验

    if ((((l1.x1 - l2.x1)*(l2.y2 - l2.y1) - (l1.y1 - l2.y1)*(l2.x2 - l2.x1))*

        ((l1.x2 - l2.x1)*(l2.y2 - l2.y1) - (l1.y2 - l2.y1)*(l2.x2 - l2.x1))) > 0 ||

        (((l2.x1 - l1.x1)*(l1.y2 - l1.y1) - (l2.y1 - l1.y1)*(l1.x2 - l1.x1))*

        ((l2.x2 - l1.x1)*(l1.y2 - l1.y1) - (l2.y2 - l1.y1)*(l1.x2 - l1.x1))) > 0)

    {

        return false;

    }

    return true;

}

Line L[1005];

int main()

{

    int n;

    scanf("%d",&n);

    for(int i=0;i<n;i++){

        scanf("%d%d%d%d",&L[i].x1,&L[i].y1,&L[i].x2,&L[i].y2);

    }

    int res = 0;

    for(int i=0;i<n-1;i++){

        for(int j=i+1;j<n;j++){

            res += intersection(L[i],L[j]);
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多边形面积(点是逆时针)  

查找一组线段内是否有相交  

        }

    }

    printf("%d",res);

}
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#include <bits/stdc++.h>

using namespace std;

struct point{

    int x;

    int y;

};

point a[105];

int main()

{

    int n;

    scanf("%d",&n);

    for(int i=0;i<n;i++)

    {

        scanf("%d %d",&a[i].x,&a[i].y);

    }

    int res = 0;

    a[n].x=a[0].x;

    a[n].y=a[0].y;

    for(int i=0;i<n;i++)

    {

        res+=(a[i].x*a[i+1].y-a[i+1].x*a[i].y);

    }

    printf("%d",res/2);

    return 0;

}
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#include <iostream>

#include <vector>

#include <cmath>

#include <algorithm>

#include <set>

using namespace std;

// ==========================================

// Part 1: 几何基础板子 (点、叉积、相交判断)

// ==========================================

const double EPS = 1e-10;
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struct P { double x, y; };

// 符号判断：0为0，1为正，-1为负

int sgn(double x) {

    if (fabs(x) < EPS) return 0;

    return x < 0 ? -1 : 1;

}

// 向量叉积: (p1-p0) x (p2-p0)

double cross(P p0, P p1, P p2) {

    return (p1.x - p0.x) * (p2.x - p0.x) + (p1.y - p0.y) * (p2.y - p0.y); // 修正：这是

点积，叉积如下

    // 考试请抄下面这行：

    return (p1.x - p0.x) * (p2.y - p0.y) - (p1.y - p0.y) * (p2.x - p0.x);

}

// 快速排斥 + 跨立实验 判断线段 (a,b) 和 (c,d) 是否相交

// 返回 true 表示相交

bool isInter(P a, P b, P c, P d) {

    // 1. 快速排斥 (Bounding Box check)

    if (max(a.x, b.x) < min(c.x, d.x) || max(c.x, d.x) < min(a.x, b.x) ||

        max(a.y, b.y) < min(c.y, d.y) || max(c.y, d.y) < min(a.y, b.y)) 

        return false;

    

    // 2. 跨立实验 (Straddle Test)

    // 只要异号(<=0)说明跨越了直线

    if (sgn(cross(a, b, c)) * sgn(cross(a, b, d)) > 0) return false;

    if (sgn(cross(c, d, a)) * sgn(cross(c, d, b)) > 0) return false;

    

    return true;

}

// ==========================================

// Part 2: 扫描线核心逻辑

// ==========================================

struct Seg { 

    P a, b; 

    int id; // 原始编号

};

// 事件结构体

struct Event {

    double x; 

    int type; // 0: 左端点(插入), 1: 右端点(删除)

    int id;   // 对应的线段下标

    

    // 排序：x优先，x相等时左端点优先(type=0在前)

    bool operator<(const Event& e) const {

        if (sgn(x - e.x) != 0) return x < e.x;

        return type < e.type;

    }
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};

// 全局变量，用于 set 的比较函数计算当前的 y

double cur_x; 

vector<Seg> segs; 

// set 的比较仿函数

struct Cmp {

    bool operator()(int i, int j) const {

        const Seg& s1 = segs[i];

        const Seg& s2 = segs[j];

        

        // 计算当前 x 对应的 y

        double y1 = s1.a.y;

        double y2 = s2.a.y;

        

        // 如果不是垂直线，按比例计算 y

        if (s1.a.x != s1.b.x) 

            y1 += (s1.b.y - s1.a.y) * (cur_x - s1.a.x) / (s1.b.x - s1.a.x);

        if (s2.a.x != s2.b.x) 

            y2 += (s2.b.y - s2.a.y) * (cur_x - s2.a.x) / (s2.b.x - s2.a.x);

            

        if (sgn(y1 - y2) != 0) return y1 < y2;

        return i < j; // y相同用id区分，保证set不合并

    }

};

/**

 * 扫描线判断是否存在相交

 * @param n 线段数量

 * @param input_segs 线段数组

 * @return true 存在相交, false 不存在

 */

bool solve(int n) {

    vector<Event> ev;

    segs.clear(); // 清空全局

    

    for (int i = 0; i < n; i++) {

        // 保证 a 是左端点，b 是右端点

        if (segs[i].a.x > segs[i].b.x) swap(segs[i].a, segs[i].b);

        segs.push_back(segs[i]);

        

        // 加入事件：0为左(入)，1为右(出)

        ev.push_back({segs[i].a.x, 0, i});

        ev.push_back({segs[i].b.x, 1, i});

    }

    

    sort(ev.begin(), ev.end());

    

    set<int, Cmp> st; // 存储线段索引的红黑树

    

    for (auto& e : ev) {

        cur_x = e.x; // 更新当前扫描线位置
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        int id = e.id;

        

        if (e.type == 0) { // 左端点：插入

            auto it = st.insert(id).first;

            

            // 检查下邻居 (前驱)

            if (it != st.begin()) {

                if (isInter(segs[id].a, segs[id].b, segs[*prev(it)].a, 

segs[*prev(it)].b)) 

                    return true;

            }

            // 检查上邻居 (后继)

            if (next(it) != st.end()) {

                if (isInter(segs[id].a, segs[id].b, segs[*next(it)].a, 

segs[*next(it)].b)) 

                    return true;

            }

        } else { // 右端点：删除

            auto it = st.find(id);

            // 它是右端点，说明之前肯定insert过，it一定存在

            // 删除前，检查它的上下邻居是否相交（因为删了中间的，它俩就挨着了）

            if (it != st.begin() && next(it) != st.end()) {

                if (isInter(segs[*prev(it)].a, segs[*prev(it)].b, segs[*next(it)].a, 

segs[*next(it)].b))

                    return true;

            }

            st.erase(it);

        }

    }

    return false;

}

// ==========================================

// Main 测试入口

// ==========================================

int main() {

    // 示例数据

    int n;

    // 假设输入格式: n, 然后 n 行 x1 y1 x2 y2

    if (cin >> n) {

        // 注意：solve函数依赖全局segs，需先填充segs

        // 为保持solve独立性，这里先把输入读到全局segs中

        segs.resize(n);

        for(int i=0; i<n; i++) {

            cin >> segs[i].a.x >> segs[i].a.y >> segs[i].b.x >> segs[i].b.y;

            segs[i].id = i;

            // 预处理保证 a 在 b 左边

            if(segs[i].a.x > segs[i].b.x) swap(segs[i].a, segs[i].b);

        }

        

        // 为了匹配上面 solve 函数签名，这里稍微调整一下调用方式

        // 实际上 solve 内部已经引用了全局 segs，直接调用即可

        // 修改 solve 函数只需传入 n 即可，或者直接 void
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凸包  

Graham算法  

        if (solve(n)) cout << "Yes (Intersect)" << endl;

        else cout << "No" << endl;

    }

    return 0;

}
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#include <iostream>

#include <vector>

#include <cmath>

#include <algorithm>

using namespace std;

// 精度控制，若是整数坐标题目可去除，把double改为long long

const double EPS = 1e-9;

// 1. 基础结构与几何函数

struct P {

    double x, y;

};

// 向量相减

P operator-(const P& a, const P& b) {

    return {a.x - b.x, a.y - b.y};

}

// 距离的平方（避免开根号掉精度）

double distSq(P a, P b) {

    return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);

}

// 叉积：(b-a) × (c-a)

// >0: c在ab左侧(逆时针); <0: c在ab右侧(顺时针); =0: 三点共线

double cross(P a, P b, P c) {

    return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);

}

// 全局基准点，用于排序比较

P p0; 

// 极角排序比较函数

bool cmp(P a, P b) {

    double cp = cross(p0, a, b);

    if (fabs(cp) > EPS) return cp > 0; // 极角小的排前（逆时针顺序）

    return distSq(p0, a) < distSq(p0, b); // 极角相同，距离近的排前

}
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/*

 * Graham扫描法主函数

 * 参数：pts (点集，无需有序)

 * 返回：凸包顶点集合 (逆时针顺序)

 * 注意：输入点数需 >= 3

 */

vector<P> graham(vector<P>& pts) {

    int n = pts.size();

    if (n < 3) return pts; // 特判

    // 1. 寻找基准点 p0 (y最小，x最小)

    int k = 0;

    for (int i = 1; i < n; i++) {

        if (pts[i].y < pts[k].y || (pts[i].y == pts[k].y && pts[i].x < pts[k].x))

            k = i;

    }

    swap(pts[0], pts[k]);

    p0 = pts[0];

    // 2. 极角排序 (从pts[1]开始)

    sort(pts.begin() + 1, pts.end(), cmp);

    // 3. 过滤共线点 (同极角只保留距离最远的)

    // 技巧：因为cmp中距离近的在前，所以同角度的最后一个就是最远的

    vector<P> q; 

    q.push_back(p0);

    for (int i = 1; i < n; i++) {

        // 如果不是最后一个点 且 当前点与下一点共线(极角相同)，则跳过当前点

        while (i < n - 1 && fabs(cross(p0, pts[i], pts[i+1])) < EPS) 

            i++;

        q.push_back(pts[i]);

    }

    if (q.size() < 3) return q; // 过滤后不足3点

    // 4. 栈扫描

    vector<P> st;

    st.push_back(q[0]);

    st.push_back(q[1]);

    for (int i = 2; i < q.size(); i++) {

        // 核心：当 (次顶->栈顶->新点) 不构成左转(<=0)时，出栈

        // st.size()-2 是次顶，st.back() 是栈顶

        while (st.size() >= 2 && cross(st[st.size()-2], st.back(), q[i]) <= EPS) {

            st.pop_back();

        }

        st.push_back(q[i]);

    }

    return st;

}

// ---------------------------------------------------------
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Jarvis算法  

// 使用案例 / 测试

int main() {

    int n;

    // 假设输入：点数n，然后n行x y

    // 示例输入：

    // 5

    // 0 0

    // 1 1

    // 2 2

    // 0 2

    // 2 0

    if (!(cin >> n)) return 0;

    

    vector<P> points(n);

    for(int i=0; i<n; i++) {

        cin >> points[i].x >> points[i].y;

    }

    // 计算凸包

    vector<P> hull = graham(points);

    // 打印结果 (如果是计算周长，这里遍历求dist即可)

    cout << "Convex Hull Points (" << hull.size() << "):" << endl;

    for (const auto& p : hull) {

        cout << "(" << p.x << ", " << p.y << ")" << endl;

    }

    // 扩展：求凸包周长

    double perimeter = 0;

    for (int i = 0; i < hull.size(); i++) {

        perimeter += sqrt(distSq(hull[i], hull[(i + 1) % hull.size()]));

    }

    printf("Perimeter: %.2f\n", perimeter);

    return 0;

}
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#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

// 定义点结构体，重载运算符方便计算

struct P {

    long long x, y;

    // 判等用于循环终止条件

    bool operator==(const P& b) const { return x == b.x && y == b.y; }
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};

/*

 * 辅助函数：叉积 & 距离

 * cross(o, a, b): 计算向量 OA 和 OB 的叉积 (x1*y2 - x2*y1)

 * 返回值 > 0: OB 在 OA 左侧 (逆时针)

 * 返回值 < 0: OB 在 OA 右侧 (顺时针)

 * 返回值 = 0: 三点共线

 */

long long cross(P o, P a, P b) {

    return (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x);

}

// 两点间距离的平方（不开根号避免精度问题）

long long distSq(P a, P b) {

    return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);

}

/*

 * 算法板子：Jarvis March 求凸包

 * 参数: vector<P> pts - 所有散点

 * 返回: vector<P> - 凸包顶点序列（按逆时针排列）

 * 复杂度: O(NH)，N为点数，H为凸包顶点数。最坏O(N^2)。

 * 适用: 点数不多(N<=1000) 或 凸包顶点很少的情况。

 */

vector<P> jarvis(vector<P> pts) {

    int n = pts.size();

    if (n < 3) return pts; // 点少于3个直接返回

    vector<P> hull;

    // 1. 寻找起始点：最左下角的点 (y最小，x最小)

    int l = 0;

    for (int i = 1; i < n; i++) {

        if (pts[i].y < pts[l].y || (pts[i].y == pts[l].y && pts[i].x < pts[l].x))

            l = i;

    }

    int cur = l;

    // 2. 循环寻找下一个点

    do {

        hull.push_back(pts[cur]);

        

        // 假设下一个点是 (cur + 1) % n

        int nxt = (cur + 1) % n; 

        // 遍历所有点，找最逆时针的点

        for (int i = 0; i < n; i++) {

            long long val = cross(pts[cur], pts[nxt], pts[i]);

            

            // 如果 i 在 cur->nxt 的左侧 (更逆时针)，更新 nxt

            // 或者 共线但 i 距离 cur 更远 (跳过中间点，取最远端点)
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别人的  

            if (val > 0 || (val == 0 && distSq(pts[cur], pts[i]) > distSq(pts[cur], 

pts[nxt]))) {

                nxt = i;

            }

        }

        cur = nxt; // 移动到下一点

    } while (cur != l); // 直到回到起点

    return hull;

}

/*

 * 功能函数：打印结果

 * 参数: 凸包点集

 */

void printHull(const vector<P>& hull) {

    cout << "凸包顶点数量: " << hull.size() << endl;

    for (const auto& p : hull) {

        cout << "(" << p.x << ", " << p.y << ")" << endl;

    }

}

// 示例主函数

int main() {

    // 测试数据：包含内部点、边界共线点

    vector<P> points = {

        {0, 3}, {1, 1}, {2, 2}, {4, 4},

        {0, 0}, {1, 2}, {3, 1}, {3, 3},

        {2, 0} // {2,0} 与 {0,0},{3,1} 可能在凸包边上

    };

    // 1. 获取凸包

    vector<P> res = jarvis(points);

    // 2. 打印结果

    printHull(res);

    return 0;

}
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#include <bits/stdc++.h>

using namespace std;

const int maxn = 1e5+5; 

int n;

struct ben

{

    double x,y;
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}p[maxn],s[maxn];

double check(ben a1,ben a2,ben b1,ben b2)//检查叉积是否大于0，如果是a就逆时针转到b 

{

    return (a2.x-a1.x)*(b2.y-b1.y)-(b2.x-b1.x)*(a2.y-a1.y);

}

double d(ben p1,ben p2)//两点间距离。。。 

{

    return sqrt((p2.y-p1.y)*(p2.y-p1.y)+(p2.x-p1.x)*(p2.x-p1.x));

}

bool cmp(ben p1,ben p2)//排序函数，这个函数别写错了，要不然功亏一篑 

{

    double tmp=check(p[1],p1,p[1],p2);

    if(tmp>0) 

        return 1;

    if(tmp==0&&d(p[0],p1)<d(p[0],p2)) 

        return 1;

    return 0;

}

int main()

{

    

    scanf("%d",&n);

    double mid;

    for(int i=1;i<=n;i++)

    {

        scanf("%lf%lf",&p[i].x,&p[i].y);

        if(i!=1&&p[i].y<p[1].y)//这是找最低点 

        {

            mid=p[1].y;p[1].y=p[i].y;p[i].y=mid;

            mid=p[1].x;p[1].x=p[i].x;p[i].x=mid;

        }

    } 

    sort(p+2,p+1+n,cmp);//系统快排 

    s[1]=p[1];//最低点一定在凸包里 

    int cnt=1;

    for(int i=2;i<=n;i++)

    {

        while(cnt>1&&check(s[cnt-1],s[cnt],s[cnt],p[i])<=0) //判断前面的会不会被踢走，如果被

踢走那么出栈

            cnt--;

        cnt++;

        s[cnt]=p[i];

    }

    s[cnt+1]=p[1];//最后一个点回到凸包起点

    double ans=0; 

    for(int i=1;i<=cnt;i++) 

        ans+=d(s[i],s[i+1]);//然后s里存好了凸包序列，只需要把两两距离累加就行

    printf("%.2lf\n",ans);

    return 0;

}

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

算法板子 - https://lixu.cc

150 / 202



最近点对  

#include <iostream>

#include <vector>

#include <cmath>

#include <algorithm>

#include <iomanip>

using namespace std;

// 定义无穷大

const double INF = 1e20;

struct Pt {

    double x, y;

};

// 1. 辅助函数：计算两点欧几里得距离

// 参数：两个点 a, b

// 返回：double 类型的距离

double dis(const Pt& a, const Pt& b) {

    return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));

}

// 2. 辅助函数：按 x 坐标排序的比较器

bool cmpx(const Pt& a, const Pt& b) {

    return a.x < b.x;

}

// 3. 辅助函数：按 y 坐标排序的比较器 (用于分治合并阶段)

bool cmpy(const Pt& a, const Pt& b) {

    return a.y < b.y;

}

// 全局数组，方便操作

vector<Pt> p; 

// ================== 核心算法板子 ==================

// 参数：当前处理的区间下标 [l, r]

// 返回：该区间内的最近点对距离

// 复杂度：O(N log^2 N)

double solve(int l, int r) {

    // 边界处理：如果区间内点很少，直接暴力计算

    // 这里的常数可以取大一点，比如 20，减少递归层数

    if (r - l <= 3) {

        double min_d = INF;

        for (int i = l; i <= r; ++i) {

            for (int j = i + 1; j <= r; ++j) {

                min_d = min(min_d, dis(p[i], p[j]));

            }

        }

        return min_d;
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    }

    // 1. 分治

    int mid = (l + r) / 2;

    double mid_x = p[mid].x; // 记录中间线的x坐标

    double d = min(solve(l, mid), solve(mid + 1, r));

    // 2. 合并 (处理跨越左右两边的点)

    // 收集所有在中间带状区域内的点 (x距离 mid_x 小于 d)

    vector<Pt> tmp;

    for (int i = l; i <= r; ++i) {

        if (abs(p[i].x - mid_x) < d) {

            tmp.push_back(p[i]);

        }

    }

    // 3. 按 y 坐标排序带状区域内的点

    sort(tmp.begin(), tmp.end(), cmpy);

    // 4. 线性扫描更新 d

    // 核心优化：内层循环只需要检查 y 坐标差值小于 d 的点

    // 理论上最多只需要检查 6~8 个点，所以这一步是线性的

    for (int i = 0; i < tmp.size(); ++i) {

        for (int j = i + 1; j < tmp.size(); ++j) {

            // 如果 y 差值已经超过 d，后面的肯定更远，直接 break

            if (tmp[j].y - tmp[i].y >= d) break; 

            d = min(d, dis(tmp[i], tmp[j]));

        }

    }

    return d;

}

// ==================================================

int main() {

    // 优化 I/O

    ios::sync_with_stdio(0); cin.tie(0);

    int n;

    // 使用案例：输入 n 个点

    if (cin >> n) {

        p.resize(n);

        for (int i = 0; i < n; ++i) {

            cin >> p[i].x >> p[i].y;

        }

        // 重要预处理：先按 x 坐标排序

        sort(p.begin(), p.end(), cmpx);

        // 调用模板

        double ans = solve(0, n - 1);

        // 输出结果，通常保留几位小数
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旋转卡壳 - 凸包直径  

 

        cout << fixed << setprecision(4) << ans << endl;

    }

    return 0;

}
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//旋转卡壳求凸包直径，改改能干别的

double rotatingCalipersConvexDiameter(vector<Point> A)

{

    int now = 0, n = A.size();

    double ans = 0;

    A.push_back(A[0]);

    for (int i = 0; i < n; i++)

    {

        while (((A[i + 1] - A[i]) ^ (A[now] - A[i])) < ((A[i + 1] - A[i]) ^ (A[now + 1] 

- A[i]))) now = (now + 1) % n;

        ans = max(ans, max(A[i].dis(A[now]), A[i + 1].dis(A[now])));

    }

    return ans;

}
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九、FFT  
手写复数  

DFT  

struct Complex {

    double x, y; // 实部和虚部

    // 构造函数

    Complex(double x = 0, double y = 0) : x(x), y(y) {}

    // 运算符重载（关键优化点）

    // 使用 const引用 传参，或者直接传值（对于两个double，传值甚至更快）

    Complex operator + (const Complex& b) const {

        return Complex(x + b.x, y + b.y);

    }

    Complex operator - (const Complex& b) const {

        return Complex(x - b.x, y - b.y);

    }

    // 复数乘法：(a+bi)(c+di) = (ac - bd) + (ad + bc)i

    Complex operator * (const Complex& b) const {

        return Complex(x * b.x - y * b.y, x * b.y + y * b.x);

    }

};

// 几个辅助函数，为了兼容 std::complex 的写法，不用改太多代码

inline double real(const Complex& a) { return a.x; }

inline double imag(const Complex& a) { return a.y; }

// 构造共轭复数（有些优化版本会用到）

inline Complex conj(const Complex& a) { return Complex(a.x, -a.y); }
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// ==================== 朴素 DFT 模板（可打印） ====================

#include <bits/stdc++.h>

using namespace std;

// 复数类型别名

using cd = complex<double>;

// 圆周率

const double PI = acos(-1.0);

/*

 * 函数名：dft

 * 功能：对序列做离散傅里叶变换（DFT）或逆变换（IDFT）

 *

 * 数学上：

 *   正变换（invert = false）：

 *     y[k] = sum_{j=0}^{n-1} a[j] * exp( 2πi * j*k / n )
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 *   逆变换（invert = true）：

 *     a[j] = (1/n) * sum_{k=0}^{n-1} y[k] * exp( -2πi * j*k / n )

 *

 * 参数：

 *   a      —— 输入序列，长度为 n 的复数向量

 *   invert —— false 表示做正变换（DFT），true 表示做逆变换（IDFT）

 *

 * 返回值：

 *   一个长度同样为 n 的复数向量，表示变换后的结果

 *

 * 复杂度：

 *   O(n^2)，适合 n 比较小（比如几千以内），或者做对拍。

 */

vector<cd> dft(const vector<cd> &a, bool invert) {

    int n = (int)a.size();

    vector<cd> res(n);

    for (int k = 0; k < n; ++k) {

        cd sum(0.0, 0.0);  // 累加结果

        for (int j = 0; j < n; ++j) {

            // 角度 = 2π * j * k / n

            // invert = false（正变换）：用 + 号

            // invert = true （逆变换）：用 - 号，并最后除以 n

            double angle = 2 * PI * j * k / n * (invert ? 1.0 : -1.0);

            cd w(cos(angle), sin(angle));  // e^{i * angle}

            sum += a[j] * w;

        }

        if (invert) sum /= n;  // 逆变换要除以 n

        res[k] = sum;

    }

    return res;

}

/*

 *（可选）对实数序列的 DFT 封装：

 *  输入一个 double 数组，自动转换成复数做 DFT

 */

vector<cd> dft_real(const vector<double> &a, bool invert) {

    vector<cd> tmp(a.size());

    for (size_t i = 0; i < a.size(); ++i) tmp[i] = cd(a[i], 0.0);

    return dft(tmp, invert);

}

//-------------------- 使用示例（需要的话可以自己删 main） --------------------//

int main() {

    // 示例：对长度为 4 的实数序列做 DFT 和逆 DFT

    vector<double> real_a = {1.0, 0.0, 2.0, 1.0};

    // 做正变换（频域）

    vector<cd> y = dft_real(real_a, false);

    cout << "DFT result (real, imag):\n";
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FFT-多项式相乘  

    for (int k = 0; k < (int)y.size(); ++k) {

        cout << "k = " << k << " : "

             << y[k].real() << " , " << y[k].imag() << "\n";

    }

    // 做逆变换（回到时域）

    vector<cd> back = dft(y, true);

    cout << "\nInverse DFT result (should be close to original):\n";

    for (int j = 0; j < (int)back.size(); ++j) {

        cout << "j = " << j << " : "

             << back[j].real() << " , " << back[j].imag() << "\n";

    }

    return 0;

}
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#include <iostream>

#include <cmath>

#include <algorithm>

#include <vector>

using namespace std;

const double PI = acos(-1.0);

const int MAXN = 262144 + 5; // 2^18，根据题目要求修改

// === 1. 手写 Complex ===

struct Complex {

    double x, y;

    Complex(double x = 0, double y = 0) : x(x), y(y) {}

    Complex operator+(const Complex &b) const { return Complex(x + b.x, y + b.y); }

    Complex operator-(const Complex &b) const { return Complex(x - b.x, y - b.y); }

    Complex operator*(const Complex &b) const { return Complex(x * b.x - y * b.y, x * 

b.y + y * b.x); }

};

// === 2. 封装后的 FFT 函数 ===

// a: 复数数组

// n: 变换长度 (必须是 2 的幂)

// type: 1 为 DFT, -1 为 IDFT

void fft(Complex *a, int n, int type) {

    // 使用 static 变量，只有当 n 发生变化时才重新计算 rev

    // 这样 A 和 B 做 FFT 时，如果长度一样，第二次调用不会有额外开销

    static int rev[MAXN];

    static int last_n = 0;

    if (n != last_n) {

        last_n = n;

        int bit = 0;
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        // 计算 n 对应的二进制位数 (例如 n=8, bit=3)

        while ((1 << bit) < n) bit++;

        

        // 重新计算 rev 数组

        for (int i = 0; i < n; i++) {

            rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));

        }

    }

    // 1. 根据 rev 数组进行位逆序置换 (Swap)

    for (int i = 0; i < n; i++) {

        if (i < rev[i]) swap(a[i], a[rev[i]]);

    }

    // 2. 蝴蝶变换 (标准流程)

    for (int mid = 1; mid < n; mid <<= 1) {

        Complex Wn(cos(PI / mid), type * sin(PI / mid));

        for (int R = mid << 1, j = 0; j < n; j += R) {

            Complex w(1, 0);

            for (int k = 0; k < mid; k++, w = w * Wn) {

                Complex x = a[j + k];

                Complex y = w * a[j + k + mid];

                a[j + k] = x + y;

                a[j + k + mid] = x - y;

            }

        }

    }

    // 3. IDFT 最后除以 n

    if (type == -1) {

        for (int i = 0; i < n; i++) a[i].x /= n;

    }

}

// === 使用示例 ===

Complex a[MAXN], b[MAXN];

int main() {

    int n, m;

    cin >> n >> m; // 输入 A 和 B 的次数

    

    // 读入系数

    for (int i = 0; i <= n; i++) cin >> a[i].x;

    for (int i = 0; i <= m; i++) cin >> b[i].x;

    // 计算 limit (2 的幂次)

    int limit = 1;

    while (limit <= n + m) limit <<= 1;

    fft(a, limit, 1);  // DFT A

    fft(b, limit, 1);  // DFT B

    // 点乘
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大数相乘  

    for (int i = 0; i < limit; i++) a[i] = a[i] * b[i];

    // IDFT

    fft(a, limit, -1); 

    // 输出

    for (int i = 0; i <= n + m; i++) 

        printf("%d ", (int)(a[i].x + 0.5));

    

    return 0;

}
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#include <iostream>

#include <vector>

#include <cmath>

#include <algorithm>

#include <string>

using namespace std;

const double PI = acos(-1.0);

// 这里的 MAXN 要开到 len(A) + len(B) 的下一级 2 的幂

// 比如两个 10万位的数相乘，结果是 20万位，limit 会是 262144，为了保险开大一点

const int MAXN = 400005; 

// === 1. 复数结构体 ===

struct Complex {

    double x, y;

    Complex(double x = 0, double y = 0) : x(x), y(y) {}

    Complex operator+(const Complex &b) const { return Complex(x + b.x, y + b.y); }

    Complex operator-(const Complex &b) const { return Complex(x - b.x, y - b.y); }

    Complex operator*(const Complex &b) const { return Complex(x * b.x - y * b.y, x * 

b.y + y * b.x); }

};

// === 2. 封装好的 FFT 函数 (不做修改) ===

void fft(Complex *a, int n, int type) {

    static int rev[MAXN];

    static int last_n = 0;

    if (n != last_n) {

        last_n = n;

        int bit = 0;

        while ((1 << bit) < n) bit++;

        for (int i = 0; i < n; i++) {

            rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));

        }

    }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

算法板子 - https://lixu.cc

158 / 202



    for (int i = 0; i < n; i++) {

        if (i < rev[i]) swap(a[i], a[rev[i]]);

    }

    for (int mid = 1; mid < n; mid <<= 1) {

        Complex Wn(cos(PI / mid), type * sin(PI / mid));

        for (int R = mid << 1, j = 0; j < n; j += R) {

            Complex w(1, 0);

            for (int k = 0; k < mid; k++, w = w * Wn) {

                Complex x = a[j + k];

                Complex y = w * a[j + k + mid];

                a[j + k] = x + y;

                a[j + k + mid] = x - y;

            }

        }

    }

    if (type == -1) {

        for (int i = 0; i < n; i++) a[i].x /= n;

    }

}

// 存放系数的数组，定义在全局防止爆栈

Complex a[MAXN], b[MAXN];

// 存放最终进位处理后的整数结果

int ans[MAXN];

int main() {

    // 优化输入输出

    ios::sync_with_stdio(false);

    cin.tie(0);

    string s1, s2;

    cin >> s1 >> s2;

    int n = s1.length();

    int m = s2.length();

    // === 步骤 1: 字符串转多项式系数 ===

    // 注意：大数乘法要倒序存储，个位放在索引 0

    // 例如 "123" -> a[0]=3, a[1]=2, a[2]=1

    // 记得初始化清空，因为全局数组虽然默认0，但多组数据时需要注意

    for(int i = 0; i < MAXN; i++) a[i] = b[i] = Complex(0, 0); 

    for (int i = 0; i < n; i++) a[i].x = s1[n - 1 - i] - '0';

    for (int i = 0; i < m; i++) b[i].x = s2[m - 1 - i] - '0';

    // === 步骤 2: 确定 FFT 长度 limit ===

    int limit = 1;

    while (limit < n + m) limit <<= 1;

    // === 步骤 3: FFT 计算卷积 ===

    fft(a, limit, 1); // DFT
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    fft(b, limit, 1); // DFT

    

    // 点值相乘

    for (int i = 0; i < limit; i++) a[i] = a[i] * b[i];

    

    fft(a, limit, -1); // IDFT

    // === 步骤 4: 处理进位 ===

    // FFT 的结果是浮点数，先四舍五入转 int

    // 卷积后的每一位可能会超过 10，比如算出 58，就要保留 8，进位 5

    for (int i = 0; i < limit; i++) {

        ans[i] = (int)(a[i].x + 0.5);

    }

    for (int i = 0; i < limit; i++) {

        if (ans[i] >= 10) {

            ans[i + 1] += ans[i] / 10;

            ans[i] %= 10;

        }

    }

    // === 步骤 5: 输出结果 ===

    // 寻找最高位的非零数字（去除前导零）

    // 结果长度最多是 n + m，所以从 limit 开始往下找即可

    int len = limit;

    while (len > 0 && ans[len] == 0) len--;

    // 倒序输出（因为我们存的时候是倒着存的，高位在后面）

    for (int i = len; i >= 0; i--) {

        cout << ans[i];

    }

    cout << endl;

    return 0;

}
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十、字符串  
KMP  

#include <bits/stdc++.h>

const int maxn = 1e5;

using namespace std;

int ne[maxn];

char pattern[maxn],text[maxn];

void GetNext(char p[],int nex[],int n)

{

    nex[0] = -1;

    int k = -1;

    int j = 0;

    while (j < n - 1)

    {

        //p[k]表示前缀，p[j]表示后缀

        if (k == -1 || p[j] == p[k]) 

        {

            ++k;

            ++j;

            nex[j] = k;

        }

        else 

        {

            k = nex[k];

        }

    }

}

int KmpSearch(int m,int n)

{

    GetNext(pattern,ne,n);

    

    int pLen = n;

    int sLen = m;

    int i = 0;

    int j = 0;

    

    while(i<sLen){

        if(j==n-1&&text[i]==pattern[j]){

            printf("found the number  %d\n",i-j);

        }

        if(text[i]==pattern[j]){

            i++;

            j++;

        }

        else{

            j = ne[j];

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

算法板子 - https://lixu.cc

161 / 202



有限状态机FA  

            if(j==-1){

                i++;

                j++;

            }

        }

    }

    

}

int main(){

    char t[] = "qwqwqwABABCABAAqABABCABAA";

    char p[]= "ABABCABAA";

    

    for(int i=0;i<100;i++){

        pattern[i] = p[i];

        text[i] = t[i];

    }

    KmpSearch(40,9); 

    

    

    return 0;

}

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

#include <iostream>

#include <vector>

#include <string>

#include <cstring>

using namespace std;

// 定义字符集大小，这里假设是 ASCII 码

#define NO_OF_CHARS 256

/**

 * @brief 计算当处于状态 state，且遇到字符 x 时，下一个状态应该是多少

 * 

 * @param pat 模式串

 * @param M 模式串长度

 * @param state 当前状态 (0 到 M)

 * @param x 输入的字符

 * @return int 下一个状态

 */

int getNextState(const string& pat, int M, int state, int x) {

    // 情况 1: 如果字符 x 刚好是模式串中下一个想要匹配的字符

    // 这里的 state < M 保证没有越界，pat[state] 就是第 state+1 个字符（索引从0开始）

    if (state < M && x == pat[state]) {

        return state + 1;

    }

    // 情况 2: 字符不匹配，或者已经到了结束状态。
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    // 我们需要找到一个最大的 k，使得：

    // pat[0...k-1] 是 (pat[0...state-1] + x) 的后缀

    

    // ns 表示 next_state，我们尝试从最长的可能长度开始递减尝试

    // 最长的可能长度就是 state（因为加了一个 x 但匹配失败了，通常长度不会超过当前）

    // 实际上，如果 state=5, 遇到错字符，最长也就可能是 5 (比如 AAAAA 遇到 A)

    for (int ns = state; ns > 0; ns--) {

        

        // 检查 pat[ns-1] 是否等于 x

        if (pat[ns - 1] == x) {

            

            // 如果最后一个字符匹配，我们需要检查前面的 ns-1 个字符是否也匹配

            // 即：检查 pat[0...ns-2] 是否等于 pat[state-(ns-1)...state-1]

            int i;

            for (i = 0; i < ns - 1; i++) {

                // pat[i] 是前缀的第 i 个

                // pat[state - (ns - 1) + i] 是当前已匹配串的对应后缀位置

                if (pat[i] != pat[state - (ns - 1) + i])

                    break;

            }

            

            // 如果循环完整走完，说明完全匹配

            if (i == ns - 1)

                return ns;

        }

    }

    // 如果找不到任何匹配的前缀，回到状态 0

    return 0;

}

/**

 * @brief 构建状态转移表 (Transition Function)

 * 

 * @param pat 模式串

 * @param TF 二维数组，用于存储结果。M为长度

 */

void computeTF(const string& pat, int M, int TF[][NO_OF_CHARS]) {

    int state, x;

    

    // 遍历每一个可能的状态 (0 到 M)

    for (state = 0; state <= M; ++state) {

        // 遍历每一个可能的输入字符

        for (x = 0; x < NO_OF_CHARS; ++x) {

            // 计算跳转

            TF[state][x] = getNextState(pat, M, state, x);

        }

    }

}

/**

 * @brief 执行有限自动机字符串匹配

 * 
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最长回文字串  

 * @param pat 模式串

 * @param txt 文本串

 */

void search(const string& pat, const string& txt) {

    int M = pat.length();

    int N = txt.length();

    // 1. 创建并计算状态转移表

    // 使用 vector 或动态分配防止栈溢出，但在演示中为了清晰使用静态大小或 vector

    // 这里使用 vector of vectors 来模拟二维数组，更安全

    vector<vector<int>> TF(M + 1, vector<int>(NO_OF_CHARS));

    

    // 为了兼容上面的 computeTF 函数签名（它接受原生数组），这里稍微做个适配

    // 或者直接重写 computeTF 使用 vector。为了代码演示最基础的原理，

    // 我们这里用原生数组的方式（注意：如果 M 很大，这需要在堆上分配）

    

    // 动态分配二维数组

    int (*tf_array)[NO_OF_CHARS] = new int[M + 1][NO_OF_CHARS];

    computeTF(pat, M, tf_array);

    // 2. 开始匹配过程

    int i, state = 0;

    for (i = 0; i < N; i++) {

        // 核心：根据当前状态和文本字符，直接查表得到新状态

        // (unsigned char) 转换是为了防止中文等负数索引越界

        state = tf_array[state][(unsigned char)txt[i]];

        // 如果状态达到了 M，说明找到了模式串

        if (state == M) {

            cout << "Pattern found at index " << i - M + 1 << endl;

        }

    }

    

    delete[] tf_array; // 清理内存

}

int main() {

    string txt = "AABAACAADAABAABA";

    string pat = "AABA";

    cout << "Text: " << txt << endl;

    cout << "Pattern: " << pat << endl;

    

    search(pat, txt);

    return 0;

}
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#include<string.h>

#include<stdio.h>

#include<iostream>

#include<algorithm>

using namespace std;

char STR[1000];

int change(char *str, int i, int j) {

    // (1)i == st, j == st;

    // (2) i == st, j == st + 1;

    int len = strlen(str);

    while(str[i] == str[j] && i >= 0 && j < len) {

        i --;

        j ++;

    }

    return j - i -1;

} 

int main()

{

    int len, t;

    scanf("%d", &t);

    while(t--) {

        scanf("%s", STR);

        len = strlen(STR);

        if(len == 0 ) {

            printf("0\n");

            return 0;

        }

        int maxLen = 1;

        for(int st = 0; st < len - 1; st ++) {

            int len1 = change(STR, st, st + 1);

            int len2 = change(STR, st, st);

            maxLen = max(maxLen, max(len1, len2));

        }

        

        printf("%d\n",maxLen);

    }

    

 } 
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十一、其它常用算法（包括上机中算法）  
二分答案  

手写堆  
C语言需要自己写一个swap。

如何手写一个堆？

1. 插入一个数 heap[++size]; up(size);

2. 求这个集合之中的最小值 heap[1]

3. 删除最小值 heap[1] = heap[size]; size--; down(1);

4. 删除任何一个元素 heap[k] = heap[size]; size--; down(k); up(k);

5. 修改任何一个元素 heap[k] = x; down(x); up(x);

定义：堆是一个完全二叉树。小根堆递归定义：每个节点小于等于左右儿子，即根节点就是最小值。

存储：假设根节点是 ，则x的左儿子是 ，x的右儿子是 。

堆排序：

#include <iostream>

#include <algorithm>

using namespace std;

const int N = 100010;

int n, m;

int h[N], size;

void down(int u){

    int t = u;

    if(u*2<=size && h[u*2]<h[t]) t = u*2;

    if(u*2+1<=size && h[u*2+1]<h[t]) t = u*2+1;

    if(u!=t){

        swap(h[u],h[t]);
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并查集  
并查集支持以下操作且可以近乎 快速完成以下操作：1️⃣将两个集合合并；2️⃣询问两个元素是否在一个集合当
中。

基本原理：使用树维护集合，每棵树是一个集合，每一个集合有一个元素作为根节点，树根的编号就是整个集合的编
号，每一个节点存储一个它的父节点， p[x]表示x的父节点。根节点 p[x]=x即集合编号。

问题一：如何判断树根，父节点指向自己： if(p[x]==x)

问题二：如何求x的集合编号，通过记录的父节点一直往上找： while(p[x] != x) x = p[x];  

问题三：如何合并两个集合：假设 p[x]的x的集合编号， p[y]是y的集合编号，直接 p[x] = y即可。

问题四：问题二的时间复杂度比较高，可以进行路径优化：查找x的根节点的时候，可以把x和所有路径上的节点都直
接指向根节点，优化下一次查找的时间复杂度。

示例：

        down(t);

    }

}

void up(int u){

    while(u/2 && h[u/2] < h[u]){

        swap(u/2,u);

        u >>= 1;

    }

}

int main(){

    scanf("%d%d",&n,&m);

    for(int i = 1; i <= n; i++) scanf("%d", &h[i]);

    size = n;

    

    for(int i = n/2; i; i--) down(i); //建堆，不需要down最后一层

    

    while(m--){

        printf("%d",&h[1]);

        h[1] = h[size];

        size--;

        down(1);

    }

    return 0;

}
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#include <iostream>

using namespace std;

const int N = 100010;

int n;

int p[N];//记录每个元素的父节点是谁

int find(int x){ //带路径压缩优化，使用递归调用
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Trie树  
用来快速存储和查找字符串集合的数据结构，

每个节点一个字符，每个位置标记是否为结尾。这里使用数组存储Trie树，每一个位置是一个节点，使用 son数组记

录每个节点的子节点位置。

示例题目：

    if(p[x]!=x) p[x] = find(p[x]);

    return p[x];

}

int main(){

    scanf("%d%d",&n,&m);

    for(int i = 1; i <=n ; i++) p[i] = i; //最开始每个元素在一个集合

    while(m--){

        char op[2];

        int a,b;

        scanf("%s%d%d",op,&a,&b);

        if(op[0]=='M') p[find(a)] = find(b);

        else{

            if(find(a) == find(b)) puts("Yes");

            else puts("No");

        }

    }

    return 0;

}
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#include <iostream>

using namespace std;

const int N = 100010;

int n;

int son[N][26], cnt[N] , idx; 

//idx代表目前数组开到哪里，下标为0的为空节点。

//son数组记录的是下标为n的节点的子节点。

//cnt记录某个字符串结尾的次数，初始是0。

char str[N];

void insert(char str[]){

    int p = 0;

    for(int i = 0; str[i]; i++){

        int u = str[i] - 'a';

        if(!son[p][u]) son[p][u] = ++idx;

        p = son[p][u];

    }

    cnt[p] ++;

}

int query(char str[]){ // 查询字符串出现的次数

    int p = 0;

    for(int i = 0; str[i]; i++){
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KMP  
定义KMP数组 next[i] = j，即以 i为终点的一段的数组里，前面 j个元素和最后面 j个元素是一样的。

匹配的时候，当匹配到key数组的第 k位时，使用 next[k]判断这一段数组有多少是相同的，把key数组向后移动

strlen(key) - next[k]位，得到新的验证数组位置，就是把验证数组指针指向 next[k]，而指向匹配数组的指针

只用每个循环加1。

        int u = str[i] - 'a';

        if(!son[p][u]) return 0;

        p = son[p][u];

    }

    return cnt[p];

}

int main(){

    int n;

    scanf("%d",&n);

    while(n--){

        char op[2];//读成字符串避免scanf读字符出现空格回车

        scanf("%s%s",op,str);

        if(op[0]=='I') insert(str);

        else query(str);

    }

    return 0;

}
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#include <iostream>

using namespace std;

const int N = 100010, M = 100010;

int n,m;

int p[N], s[M];

int nxt[N];

int main(){

    cin >> n >> p+1 >> m >> s+1;

    

    //求next的过程

    for(int i = 2, j = 0; i <= n;i++){

        while(j && p[i]!=p[j+1]) j = nxt[j];

        if(p[i] == p[j+1]) j++;

        nxt[i] = j;

    }

    

    //KMP匹配算法

    for(int i = 1, j = 0; i<=m; i++){

        while (j && s[i]!=p[j+1]) j = nxt[j]; //匹配不上使用next[j]计算前后缀重复区间大小，一

直位移到可以匹配上。

        if(s[i] == p[j+1]) j++;

        if(j==n){
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单调栈  
给定一个序列，求一个序列当中每个数左边离他最近的且比他小的数在什么地方。

区间合并  
给定n个区间  ，要求合并所有有交集的区间。

步骤：

1. 按区间左端点排序。

2. 按左端点从小到大顺序遍历，记录一个当前的区间，扫描接下来的区间是否与当前区间有交集，若有交集则合
并在一起并继续扫描，如果没有交集就把当前区间更新为这个区间。

            //匹配成功！

        }

    }

}
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#include <iostream>

using namespace std;

const int N = 100010;

int n;

int stk[N], tt;

int main(){

    cin >> n;

    for(int i = 0; i < n; i++){

        int x;

        cin >> x;

        while(tt && stk[tt] >= x) tt --;

        if(tt) cout << stk[tt] << endl;

        else cout << -1 << ' ';

        stk[++tt] = x;

    }

    return 0;

}
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void merge(vector<PII> &segs){

    vector<PII> res;

    sort(segs.begin(), segs.end());

    int st = -2e9, ed = -2e9;

    for(auto seg: segs){

        if(ed < seg.first){

            if (st != -2e9) res.push_back({st,ed});

            st = seg.first, ed = seg.second;

        }

        else ed = max(ed,seg.second);

    }

    if(st != -2e9) res.push_back({st,ed});

    segs = res;
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高精度加减乘除  

}14

vector<int> add(vector<int> &A, vector<int> &B){

    if (A.size() < B.size()) return add(B, A);

    vector<int> C;

    int t = 0;

    for (int i = 0; i < A.size(); i ++ ){

        t += A[i];

        if (i < B.size()) t += B[i];

        C.push_back(t % 10);

        t /= 10;

    }

    if (t) C.push_back(t);

    return C;

}

vector<int> sub(vector<int> &A, vector<int> &B){

    vector<int> C;

    for (int i = 0, t = 0; i < A.size(); i ++ ){

        t = A[i] - t;

        if (i < B.size()) t -= B[i];

        C.push_back((t + 10) % 10);

        if (t < 0) t = 1;

        else t = 0;

    }

    removeZero(C);

    return C;

}

vector<int> mul(vector<int> &A, vector<int> &B) {

    vector<int> C(A.size() + B.size() + 7, 0); // 初始化为 0

    for (int i = 0; i < A.size(); i++)

        for (int j = 0; j < B.size(); j++)

            C[i + j] += A[i] * B[j];

    int t = 0;

    for (int i = 0; i < C.size(); i++) { 

        t += C[i];

        C[i] = t % 10;

        t /= 10;

    }

    removeZero(C);

    return C;

}

vector<int> div(vector<int> &A, int b, int &r){

    vector<int> C;

    r = 0;

    for (int i = A.size() - 1; i >= 0; i -- )

    {

        r = r * 10 + A[i];

        C.push_back(r / b);

        r %= b;
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    }

    reverse(C.begin(), C.end());

    while (C.size() > 1 && C.back() == 0) C.pop_back();

    return C;

}
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#include <iostream>

#include <vector>

#include <string>

#include <algorithm>

using namespace std;

// 类型定义：存数位，下标0存个位

typedef vector<int> VI; 

/*

 * 辅助函数：高精度加法

 * 参数: a, b (倒序数组)

 * 返回: a + b

 */

VI add(const VI &a, const VI &b) {

    VI c; 

    int t = 0;

    for (int i = 0; i < a.size() || i < b.size() || t; ++i) {

        if (i < a.size()) t += a[i];

        if (i < b.size()) t += b[i];

        c.push_back(t % 10);

        t /= 10;

    }

    return c;

}

/*

 * 辅助函数：高精度减法

 * 参数: a, b (倒序数组), 需保证 a >= b

 * 返回: a - b

 */

VI sub(const VI &a, const VI &b) {

    VI c = a;

    for (int i = 0; i < b.size(); ++i) c[i] -= b[i];

    for (int i = 0; i < c.size() - 1; ++i) {

        if (c[i] < 0) {

            c[i] += 10;

            c[i + 1]--;

        }

    }

    // 去除前导0（保留至少一位）

    while (c.size() > 1 && c.back() == 0) c.pop_back();

    return c;

}
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/*

 * 辅助函数：朴素乘法 (基准情况用)

 * 复杂度: O(N^2)

 */

VI mul_naive(const VI &a, const VI &b) {

    VI c(a.size() + b.size(), 0);

    for (int i = 0; i < a.size(); ++i) {

        for (int j = 0; j < b.size(); ++j) {

            c[i + j] += a[i] * b[j];

            c[i + j + 1] += c[i + j] / 10;

            c[i + j] %= 10;

        }

    }

    while (c.size() > 1 && c.back() == 0) c.pop_back();

    return c;

}

/*

 * 核心算法：Karatsuba 分治乘法

 * 参数: a, b (倒序数组)

 * 说明: 自动处理分治与合并

 */

VI karatsuba(VI a, VI b) {

    int n = max(a.size(), b.size());

    // 1. 基准情况：长度小直接暴力，避免递归常数过大

    if (n <= 32) return mul_naive(a, b); 

    // 补齐长度以便对半切分

    while (a.size() < n) a.push_back(0);

    while (b.size() < n) b.push_back(0);

    int k = n / 2; // 分割点

    // 2. 分割：low为低位, high为高位

    VI a_low(a.begin(), a.begin() + k);

    VI a_high(a.begin() + k, a.end());

    VI b_low(b.begin(), b.begin() + k);

    VI b_high(b.begin() + k, b.end());

    // 3. 递归计算三部分

    // z0 = B * D

    VI z0 = karatsuba(a_low, b_low); 

    // z2 = A * C

    VI z2 = karatsuba(a_high, b_high); 

    // z1 = (A + B) * (C + D)

    VI z1 = karatsuba(add(a_low, a_high), add(b_low, b_high)); 

    // 4. 计算中间项: z1 = z1 - z0 - z2

    VI mid = sub(sub(z1, z0), z2);

    // 5. 移位合并结果: res = z2 * 10^2k + mid * 10^k + z0

    // 直接操作数组模拟移位加法

    VI res(2 * n, 0); 
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    // 加 z0 (无偏移)

    for(int i=0; i<z0.size(); ++i) res[i] += z0[i];

    // 加 mid (偏移 k 位)

    for(int i=0; i<mid.size(); ++i) res[i+k] += mid[i];

    // 加 z2 (偏移 2k 位)

    for(int i=0; i<z2.size(); ++i) res[i+2*k] += z2[i];

    // 统一处理进位

    for(int i=0; i<res.size()-1; ++i) {

        if(res[i] >= 10) {

            res[i+1] += res[i] / 10;

            res[i] %= 10;

        }

    }

    

    // 去前导零

    while (res.size() > 1 && res.back() == 0) res.pop_back();

    return res;

}

/*

 * 接口函数：字符串转VI并调用

 * 作用: 处理输入输出格式

 */

void solve() {

    string s1, s2;

    cin >> s1 >> s2;

    VI a, b;

    // 倒序存储：字符串"123" -> 数组{3, 2, 1}

    for (int i = s1.size() - 1; i >= 0; i--) a.push_back(s1[i] - '0');

    for (int i = s2.size() - 1; i >= 0; i--) b.push_back(s2[i] - '0');

    VI res = karatsuba(a, b);

    // 倒序打印

    for (int i = res.size() - 1; i >= 0; i--) cout << res[i];

    cout << endl;

}

int main() {

    // 开启IO加速

    ios::sync_with_stdio(false);

    cin.tie(0);

    solve();

    return 0;

}
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最大公约数与最小公倍数  

辗转相除：

 

负数取模  
C++中负数取模结果可能是负数（如 -5 % 3 = -2）。如果需要正余数：

 

向上取整  
整数 a / b  默认向下取整。如果需要向上取整 ceil(a/b)：

 

常用数据结构  

单链表  

int g = __gcd(a, b); // 内置函数

int l = (a * b) / g; // 注意 a*b 可能溢出，建议 a/g*b

1

2

typedef long long ll;

ll gcd(ll a, ll b) {

    return b ? gcd(b, a % b) : a;

}
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int ans = (a % MOD + MOD) % MOD;1

int ans = (a + b - 1) / b;1

// head存储链表头，e[]存储节点的值，ne[]存储节点的next指针，idx表示当前用到了哪个节点

int head, e[N], ne[N], idx;

// 初始化

void init(){

    head = -1;

    idx = 0;

}

// 在链表头插入一个数a

void addToHead(int a){

    e[idx] = a, ne[idx] = head, head = idx ++ ;

}

// 在第k次插入的元素后插入

void insert(int k ,int x){

    e[idx] = x , ne[idx] =  ne[k-1] , ne[k-1] = idx ++;

}
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双链表  

 

// 删除第k + 1 次插入的元素

void remove(int k){

    if // 不是头节点

        ne[k] = ne[ne[k]];

    else // 删除头结点

        head = ne[head];

}

void visit(){

    for(int i = head ; i != -1; i = ne[i])

        cout <<e[i]<<" ";

}
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// e[]表示节点的值，l[]表示节点的左指针，r[]表示节点的右指针，idx表示当前用到了哪个节点

int e[N], l[N], r[N], idx;

// 初始化

void init(){

    //0是左端点，1是右端点 

    r[0] = 1, l[1] = 0;

    idx = 2;

}

// 在节点a的右边插入一个数x , 如果在左边, insert(l[k] , x) 

void insert(int a, int x){

    e[idx] = x;

    l[idx] = a, r[idx] = r[a];

    l[r[a]] = idx, r[a] = idx ++ ;

}

// 或者这样写:

void insertR(int k, int x){

    e[idx] = x ; l[idx] = k ; r[idx] = r[k]; 

    l[r[k]] = idx;

    r[k] = idx++;

}

void insertL(int k , int x){

    e[idx]  = x;  l[idx] =  l[k] ; r[idx] = k;

    r[l[k]] = idx;

    l[k] = idx++;

}

// 删除节点

void remove(int a){

    l[r[a]] = l[a];

    r[l[a]] = r[a];

}
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二分查找  

浮点数二分（手动开根）：

 

template <typename T>

int binary_search(const T* array, int n, T value) {

  int left = 0;

  int right = n - 1;

  while (left <= right) {

    int mid = left + (right - left) / 2;

    if (array[mid] == value) {

      return mid;

    } else if (array[mid] < value) {

      left = mid + 1;

    } else {

      right = mid - 1;

    }

  }

  return -1;

}
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int bsearch(int a[], int l, int r){

    while(l < r){

        int mid = l + r >> 1;

        if (check(mid)) r = mid;

        else l = mid + 1;

    }

    return l;

}
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#include <iostream>

using namespace std;

int main(){

    double x;

    cin >> x;

    double l = 0, r = x;

    while(r- l> 1e-8){

        double mid = (l + r)/2;

        if(mid*mid>=x) r = mid;

        else l = mid;

    }

    printf("%lf\n",l);

    return 0;

}
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并查集  

树状数组（前缀和）  

有一个长度为  的数组，前缀和数组  ，数组最好从下标1开始。定义  以及 
 。

求  之间的数组和，直接使用  降低时间复杂度。

int fa[maxn],size[maxn]; // 祖父节点和大小节点，若fa[i]==i，说明i是这个集合的根

inline void init(int n) // 初始化，每个节点是一个集合

{

    for (int i = 1; i <= n; ++i){

        fa[i] = i;

        size[i] = 1;

    }

}

int find(int x) // 查找x节点的集合的根，同时进行路径压缩

{

    return x == fa[x] ? x : (fa[x] = find(fa[x]));

}

inline void merge(int i, int j) // 对i节点和j节点进行合并

{

    size[find(j)] += size[find(i)];

    fa[find(i)] = find(j);

}
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struct Bit {

    #define Maxn 1000100

    long long val[Maxn];

    inline long long lowbit(int x) {return x & -x;} // 最低位1

    inline void add(int x, long long v) {while (x < Maxn) {val[x] += v; x += 

lowbit(x);}} // x位添加v

    inline long long ask(int x) {int res = 0; while (x) {res += val[x]; x -= lowbit(x);} 

return res;} // 返回x位前缀和

    inline long long query(int l, int r) {return ask(r) - ask(l - 1);} // 返回[l, r]区间和

} bit;
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#include <iostream>

using namespace std;

int n,m;

int arr[100009],s[100009];

int r,l;

int main(){

    cin >> n >> m;

    arr[0] = 0;

    s[0] = 0;

    for(int i = 1; i <= n; i++){

        cin >> arr[i];
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二维前缀和：  表示以 为右下角的矩形区域的和。总体是容斥原理。

构造方法:

同样还是要设 S[0][j] = 0  和 S[i][0] = 0， S[i][j]  中 i  和 j  都从1开始计数。此时使用 vector会方便一

些，或者定义到全局数组。

使用方法：

查询子矩阵和，查询以 为左上角、 为右下角的子矩阵和：

差分  

用于对数组一段进行整体加一个数或者减一个数

对于数组  ，构造数组  ，使得 ，即让a数组是b的前缀和。

计算b数组：

使用方法

由  可以由 推出 。

若需要对 数组的  区间上每一个数都加上常数 ，只需给  并给  。此时给 数组连续区间全部添加
上或者减去一个常数，只需要改变差分数组的两个数，此时时间复杂度只有  。

可以开始把所有  都看为0，然后调用连续区间加常数的函数用来初始化赋值，这样只需要定义一个函数。

代码

        s[i] = s[i-1] + arr[i];

    }

    for(int i=0;i<m;i++){

        cin >> l >> r;

        cout << (s[r] - s[l-1]) << endl;

    }

}
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void insert(int*b,int l,int r,int c){

    b[l] += c;

    b[r+1] -= c;

    return;

}

1

2

3

4

5

#include <iostream>

using namespace std;

int n,m;

int arr[100009],b[100009];

int r,l,c;
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二维差分

有一个原矩阵  ，构造差分矩阵  ，使 是 的前缀和。

若想将  到  范围内所有数加  ，需要进行以下操作：

改变这四个值即可。

void insert(int*b,int l,int r,int c){

    b[l] += c;

    b[r+1] -= c;

    return;

}

int main(){

    cin >> n >> m;

    arr[0] = 0;

    b[0] = 0;

    for(int i = 1; i <= n; i++){

        scanf("%d",&arr[i]);

    }

    for(int i = 1; i <= n; i++){

        insert(b,i,i,arr[i]);

    }

    while(m--){

        int l,r,c;

        scanf("%d%d%d",&l,&r,&c);

        insert(b,l,r,c);

    }

    for(int i = 1 ; i <= n; i++){

        printf("%d ",b[i]);

    }

}
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堆  

第k小堆  

使用方法：

可删除堆  

struct Priority_Queue { // 本质是用两个堆存储

    int k; 

    priority_queue<int> q1; // 大根堆，当前集合中最小的 k-1 个元素

    priority_queue<int, vector<int>, greater<int> > q2; // 小根堆，保存剩下的所有元素

    Priority_Queue() { }

    Priority_Queue(int _k) : k(_k) {} // 构造方法，应该用这个

    void push(int v) {

        q1.push(v);

        while (q1.size() >= k) q2.push(q1.top()), q1.pop();

    }

    void pop() {

        if (!q2.empty()) q2.pop(); 

        else if(!q1.empty()) q1.pop();

    }

    int top() { // 返回当前第k小

        if (!q2.empty()) return q2.top();

        else if(!q1.empty()) return q1.top();

        else return -1;

    }

};
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Priority_Queue pq(3); // 维护第 3 小

pq.push(5);

pq.push(1);

pq.push(7);

// 此时 pq.top() = 当前第 3 小
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struct p{

    int data;

    int k;

};

struct H{

    #define N 1000000+5

    #define type p

    type Heap[N];

    int HeapSize = 0;

    

    int cmp(const type &a,const type &b){

        return a.data<=b.data;
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    }

    

    void swap(type arr[], int i, int j){

        type temp;

        temp = arr[i];

        arr[i] = arr[j];

        arr[j] = temp;

    } 

    

    void ShiftDown(int i){

        int cur = i;

        while(cur<=HeapSize){

            int left = cur<<1;

            int right = left + 1;

            int min = cur;

            if(left<=HeapSize&&cmp(Heap[left],Heap[min])) min = left;

            if(right<=HeapSize&&cmp(Heap[right],Heap[min])) min = right;

            if(min==cur) return;

            else{

                swap(Heap,cur,min);

                cur = min;

            } 

        }

    } 

    

    void ShiftUp(int i){

        int cur = i;

        while(cur>1){

            int parent = cur>>1;

            if(!cmp(Heap[parent],Heap[cur])){

                swap(Heap,parent,cur);

                cur = parent;

            }

            else return;

        }

    } 

    

    void push(type num){

        Heap[++HeapSize] = num;

        ShiftUp(HeapSize);

    }

    

    void pop(){

        if(HeapSize<=0) return ;

        Heap[1] = Heap[HeapSize--];

        ShiftDown(1);

    }

    // 删除第k个元素

    void del(int k){

        if(HeapSize<=0) return;

        Heap[k] = Heap[HeapSize--];

        ShiftDown(k);

        ShiftUp(k);
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    }

    // 修改第k个元素

    void repl(int k,type num){

        if(HeapSize<k) return;

        Heap[k] = num;

        ShiftDown(k);

        ShiftUp(k);

    }

    

    type top(){

        return Heap[1];

    }

};
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十二、数论  
试除法判定质数  

试除法分解质因数  
         是质数

求素数  

朴素筛  

bool is_prime(int x){

    if (x < 2) return false;

    for (int i = 2; i <= x / i; i ++ )

        if (x % i == 0)

            return false;

    return true;

}
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void divide(int x){

    for (int i = 2; i <= x / i; i ++ )

        if (x % i == 0){

            int s = 0;

            while (x % i == 0) x /= i, s ++ ;

            cout << i << ' ' << s << endl;

        }

    if (x > 1) cout << x << ' ' << 1 << endl;

}
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int primes[N], cnt; // primes[]存储所有素数

bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n){

    for (int i = 2; i <= n; i ++ ){

        if (st[i]) continue;

        primes[cnt ++ ] = i;

        for (int j = i + i; j <= n; j += i)

            st[j] = true;

    }

}
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线性筛  

埃式筛(不如线性筛)  

试除法求约数  
约数 n = a * b   ,求所有的a和b

约数个数和约数之和  
如果 N = 

int primes[N], cnt; // primes[]存储所有素数

bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n){

    for (int i = 2; i <= n; i ++ ){

        if (!st[i]) primes[cnt ++ ] = i;

        for (int j = 0; primes[j] <= n / i; j ++ ){

            st[primes[j] * i] = true;

            if (i % primes[j] == 0) break;

        }

    }

}

1
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vector<int> get_divisors(int x){

    vector<int> res;

    for (int i = 1; i <= x / i; i ++ )

        if (x % i == 0){

            res.push_back(i);

            if (i != x / i) res.push_back(x / i);

        }

    sort(res.begin(), res.end());

    return res;

}
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约数个数： $(c_1 + 1) * (c_2 + 1) * ... * (c_k + 1)$

约数之和：$ (p_1^0 + p_1^1 + ... + p_1^{c_1}) * ... * (p_k^0 + p_k^1 + ... + p_k^{c_k})$

1

2

3

// 先分解质因数 

long long res = 1 ;unordered_map <int,int> primes

for(auto p : primes){

  LL a = p.first, b = p.second;

  LL t = 1;

  while (b -- ) t = (t * a + 1) % mod;

  res = res * t % mod;

}
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欧几里得算法  

求欧拉函数  

筛法求欧拉函数  

int gcd(int a, int b){

    return b ? gcd(b, a % b) : a;

}

1

2

3

int phi(int x){

    int res = x;

    for (int i = 2; i <= x / i; i ++ )

        if (x % i == 0){

            res = res / i * (i - 1);

            while (x % i == 0) x /= i;

        }

    if (x > 1) res = res / x * (x - 1);

    return res;

}

1
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int primes[N], cnt;     // primes[]存储所有素数

int euler[N];           // 存储每个数的欧拉函数

bool st[N];         // st[x]存储x是否被筛掉

void get_eulers(int n){

    euler[1] = 1;

    for (int i = 2; i <= n; i ++ ) {

        if (!st[i]){

            primes[cnt ++ ] = i;

            euler[i] = i - 1;

        }

        for (int j = 0; primes[j] <= n / i; j ++ ){

            int t = primes[j] * i;

            st[t] = true;

            if (i % primes[j] == 0){

                euler[t] = euler[i] * primes[j];

                break;

            }

            euler[t] = euler[i] * (primes[j] - 1);

        }

    }

}
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快速幂  

扩展欧几里得  

求组合数  

快速打质数表  

求 m^k mod p，时间复杂度 O(logk)。

int qmi(int m, int k, int p) {

    int res = 1 % p, t = m;

    while (k){

        if (k&1) res = res * t % p;

        t = t * t % p;

        k >>= 1;

    }

    return res;

}

1

2

3

4

5

6

7

8

9
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// 求x, y，使得ax + by = gcd(a, b)

int exgcd(int a, int b, int &x, int &y){

    if (!b){

        x = 1; y = 0;

        return a;

    }

    int d = exgcd(b, a % b, y, x);

    y -= (a/b) * x;

    return d;

}

1
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3
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5
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7

8
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// c[a][b] 表示从a个苹果中选b个的方案数

for (int i = 0; i < N; i ++ )

    for (int j = 0; j <= i; j ++ )

        if (!j) c[i][j] = 1;

        else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;

1

2

3

4

5

vector<int> generate_prime_list(int n) {

    if (n <= 2)

        return vector<int>{2};

    if (n <= 3)

        return vector<int>{2, 3};

    if (n <= 5)

        return vector<int>{2, 3, 5};

    vector<int> prime_list = {2, 3, 5};

    int i = 1;

    int x;

    while (true) {

        x = 6 * i + 1;

        if (x > n)
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            break;

        if (is_prime(x, prime_list))

            prime_list.push_back(x);

        x = 6 * i + 5;

        if (x > n)

            break;

        if (is_prime(x, prime_list))

            prime_list.push_back(x);

        i++;

    }

    return prime_list;

}

bool is_prime(int x, const vector<int> &prime_list) {

    for(auto u: prime_list){

        if(x % u == 0)

            return false;

        if(u * u > x)

            return true;

    }

    return false;

}
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十三、补丁-一些读入、编译的问题  
命令行编译运行方法  
这是一个非常实用的技能，尤其是在考试、机房环境或者服务器上工作时。

绝大多数考试和OJ（Online Judge）环境使用的是 GCC/G++ 编译器。如果你在 Windows 上安装了 MinGW，或者在 
Linux/macOS 环境下，使用的都是这一套指令。

以下是针对单文件编译的极简指南。

一、 GCC/G++ (最通用，适用于 Linux/Mac/Windows MinGW)  

1. C 语言 (使用 gcc )  

假设你的源代码文件名为 hello.c。

最简单的编译命令：

结果：默认生成可执行文件。

Windows 下是 a.exe

Linux/Mac 下是 a.out

指定输出文件名 (推荐)：

结果：生成名为 hello  (Windows下是 hello.exe ) 的可执行文件。

记忆方法： -o  后面紧跟 Output 名字。

链接数学库 (重要)：
如果你的 C 代码里用了 math.h  中的函数（如 sqrt , pow），在 Linux 下有时会报错 undefined 
reference，需要加上 -lm：

2. C++ 语言 (使用 g++ )  

假设你的源代码文件名为 main.cpp。

最简单的编译命令：

指定输出文件名 (推荐)：

gcc hello.c1

gcc hello.c -o hello1

gcc hello.c -o hello -lm1

g++ main.cpp1
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开启常用警告 & 指定标准 (考试防坑必备)：

-Wall：开启所有警告（Warning All）。如果你写了未初始化的变量，编译器会提示你，这在考试查

错时非常有用。

-std=c++11：指定使用 C++11 标准（也可以是 c++14 , c++17）。有些旧的编译器默认标准很老，导

致一些新语法（如 auto， vector  初始化）报错。

3. 如何运行程序  

编译成功后，你需要运行生成的文件：

Windows (CMD/PowerShell):

Linux / macOS:

注意：Linux/Mac 下必须加 ./  表示当前目录，否则系统找不到文件。

二、 MSVC (Windows Visual Studio 原生编译器)  

如果你发现机房电脑里装了 Visual Studio，但是打不开 IDE，或者你只能用命令行，你可以使用微软的编译器 cl。

前提：你必须打开 "Developer Command Prompt for VS 20xx" (在开始菜单里搜)，普通的 CMD 通常找不到 cl  
命令。

编译 C/C++：

结果：它会自动生成 main.obj  和 main.exe。

运行：直接输入 main.exe  即可。

三、 考试/上机 极简速查表 (Cheat Sheet)  

建议背下这一行 “万能命令”，既能查错又能指定文件名：

g++ main.cpp -o main1

g++ main.cpp -o main -Wall -std=c++111

hello.exe

// 或者

.\hello.exe

1

2

3

./hello

// 或者是 ./a.out

1

2

cl main.cpp1
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语言 源代码 编译命令 (推荐) 运行 (Win) 运行 (Lin/Mac)

C test.c gcc test.c -o test -Wall test.exe ./test

C++ test.cpp g++ test.cpp -o test -Wall -std=c++11 test.exe ./test

四、 常见问题 (Troubleshooting)  

1. Command not found / 不是内部或外部命令

原因：环境变量没配好。

解决：

如果是 Windows 且装了 VS，去开始菜单找 "Developer Command Prompt"。

如果是 Windows 且装了 Dev-C++ 或 CodeBlocks，去它们的安装目录找 MinGW\bin  文件夹，

把这个路径加到系统环境变量 Path 里（或者直接在这个 bin 目录下写代码编译）。

2. undefined reference to ...

原因：链接错误。

解决：C语言用数学函数记得加 -lm；如果是 C++ 代码错误使用了 gcc  编译，请改用 g++。

3. 编译成功了，但是运行没反应

解决：一定要看清楚生成的文件名是什么（默认是 a.exe / a.out），并且在命令行里手动输入文件名

回车运行。

祝你上机顺利！只要记住 g++ xxx.cpp -o xxx  基本就能应付 99% 的情况。

 

读取和输出  

1. 标准流 I/O (iostream )  

这是 C++ 最常用、最推荐的方式，具有类型安全（不需要像 printf  那样指定 %d）和可扩展性的特点。

需要头文件： #include <iostream>

(1) 基本输出 std::cout  

使用 <<（流插入运算符）将数据发送到标准输出。

#include <iostream>

using namespace std;

int main() {

    int a = 10;

    string s = "Hello";

    

    // 自动识别类型

    cout << s << ", world! Number: " << a << "\n";

    

    // endl 会换行并刷新缓冲区（速度较慢），"\n" 仅换行（速度快）
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功能 printf 写法 cout 写法 (需 <iomanip> )

保留 2 位小数 %.2f cout << fixed << setprecision(2) << x;

宽度 5 (右对齐) %5d cout << setw(5) << x;

宽度 5 (左对齐) %-5d cout << left << setw(5) << x;

补零 (宽度 3) %03d cout << setfill('0') << setw(3) << x;

输出字符串 %s 直接输出 (如果是 string)

(2) 基本输入 std::cin  

使用 >>（流提取运算符）从标准输入读取数据。

特点：会自动跳过空白字符（空格、制表符、换行符）。

(3) 读取整行 std::getline  

cin >> s  读到空格就会停止。如果想读取包含空格的一整行（例如地址或句子），需要用 getline。

注意坑点：如果先用 cin >>  读取数字，再用 getline，需要处理缓冲区里残留的换行符。

    cout << "End of line" << endl; 

    return 0;

}

12

13

14

#include <iostream>

using namespace std;

int main() {

    int x;

    double y;

    // 如果输入 "10 3.14"，cin 会分别读取

    cin >> x >> y;

    cout << "x=" << x << ", y=" << y << endl;

    return 0;

}
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#include <iostream>

#include <string>

using namespace std;

int main() {

    string str;

    // 读取一行，直到遇到换行符

    getline(cin, str); 

    cout << "Input content: " << str << endl;

    return 0;

}
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2. C 风格 I/O (cstdio )  

这是继承自 C 语言的方式。在算法竞赛或需要严格格式控制时非常常用，因为它的速度通常比未经优化的 cin/cout  

快。

需要头文件： #include <cstdio>  (或 #include <stdio.h> )

(1) 格式化输出 printf  

使用占位符来指定格式。

%d : 整数

%lld : long long

%f  / %.2f : 浮点数 / 保留两位小数

%s : C 风格字符串 ( char* )，如果是 std::string  需要用 .c_str()。

使用 %nd， n  代表最小宽度。

默认是右对齐（前面补空格）。

加负号 %-nd  表示左对齐（后面补空格）

(2) 格式化输入 scanf  

同样使用占位符，注意变量前通常需要加 &（取地址符），数组名除外。

int n; cin >> n;

cin.ignore(); // 忽略掉输入 n 后的那个换行符

string s; getline(cin, s);

1

2

3

#include <cstdio>

int main() {

    int a = 123;

    double b = 3.14159;

    

    // 保留2位小数

    printf("Integer: %d, Float: %.2f\n", a, b); 

    return 0;

}
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3. I/O 性能优化 (算法竞赛专用)  

默认情况下， cin/cout  为了兼容 scanf/printf，会进行同步，导致速度较慢。在处理百万级数据输入输出时，可
以使用以下代码提速：

4. 字符串读写  

字符串的读写是 C++ 中最容易踩坑的地方，尤其是混用 C 风格字符串 ( char[] ) 和 C++ std::string，以及混用不
同的读取函数时。

针对你的要求，我将按照功能场景（读单词 vs 读整行）来总结 cin、 scanf、 fgets  以及 cout  的用法。

1. 变量类型区别  

在讲读取之前，必须明确你要读到哪里去：

std::string : C++ 专用字符串，可变长，极其好用。（推荐）

char s[100] : C 风格字符数组，长度固定，需要注意溢出。（老式代码或底层操作用）

#include <cstdio>

int main() {

    int a;

    long long b;

    // 读取直到遇到 EOF（文件结束符）

    // scanf 返回成功读取变量的个数

    while (scanf("%d %lld", &a, &b) != EOF) {

        printf("Read: %d %lld\n", a, b);

    }

    return 0;

}
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#include <iostream>

using namespace std;

int main() {

    // 1. 关闭与 stdio 的同步

    ios::sync_with_stdio(false);

    // 2. 解除 cin 和 cout 的绑定（防止 cin 前自动刷新 cout）

    cin.tie(nullptr);

    // 之后只能混用 cin/cout，不能混用 scanf/printf

    int n;

    cin >> n;

    cout << n << "\n"; // 尽量用 "\n" 代替 endl，endl 会强制刷新缓冲区

    return 0;

}
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2. 场景一：读取一个单词（遇到空格、回车、Tab 就停止）  

输入示例： Hello World

(1) 使用 cin  (支持 string  和 char[] )  

最常用的方式，会自动跳过前面的空白符。

(2) 使用 scanf  (仅支持 char[] )  

需要使用 %s。

注意： scanf  不能直接读进 std::string，必须先读进 char[]。

缺点：不安全，如果输入太长会爆内存（缓冲区溢出）。

3. 场景二：读取一整行（包含空格）  

输入示例： Hello World

(1) 使用 std::getline  (配合 std::string ) —— 最推荐  

这是 C++ 读取一行最标准的方法。它会读取直到换行符的所有字符，并丢弃换行符。

(2) 使用 cin.getline  (配合 char[] )  

这是 cin  的成员函数，用于读取到字符数组中。

(3) 使用 fgets  (配合 char[] ) —— C 语言中最安全的方式  

fgets  是设计用来替代不安全的 gets  的。

特点 1：它会把换行符 \n  也读进去！(除非行太长超过了大小)。

特点 2：必须指定最大长度。

string s;      // 或者 char s[100];

cin >> s;      // 读入 "Hello"，剩下的 "World" 还在缓冲区

cout << s;     // 输出 Hello

1

2

3

char s[100];

scanf("%s", s); // 读入 "Hello"

// printf("%s", s);

1

2

3

string s;

getline(cin, s); // 读入 "Hello World"

cout << s;

1

2

3

char s[100];

cin.getline(s, 100); // 读入 "Hello World"，自动处理 '\0'

1

2
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(4) 使用 scanf  的正则用法 (配合 char[] ) —— 竞赛常用黑科技  

scanf  可以通过 %[^\n]  来实现“读到换行符为止”。

4. 重点：输出 (Output)  

(1) 输出 std::string  

只能用 cout。

如果要用 printf，必须转换成 C 风格： s.c_str()。

(2) 输出 char s[]  

cout、 printf、 puts  都可以。

5. 巨坑预警：混用时的“回车残留”  

这是新手最容易遇到的 Bug。
当你先用 cin  或 scanf  读取一个数字，紧接着用 getline  或 fgets  读取字符串时，程序会“跳过”字符串的输入。

原因： cin >> n  读走了数字，但把回车符 \n  留在了缓冲区。紧接着的 getline  一看缓冲区里有个 \n，以为读

完了一行空行，于是直接结束。

错误示例：

char s[100];

// 从标准输入(stdin)读取，最多读 99 个字符 + 1 个结尾符

fgets(s, 100, stdin); 

// 输入 "Hello"，s 的内容实际是 "Hello\n\0"

// 很多时候我们需要手动把那个 \n 去掉：

int len = strlen(s);

if(s[len-1] == '\n') s[len-1] = '\0'; 

1
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char s[100];

scanf("%[^\n]", s); // 读入 "Hello World"，遇到 \n 停止

1

2

string s = "Hello";

cout << s << endl;          // 正确

printf("%s\n", s.c_str());  // 正确，必须加 .c_str()

// printf("%s", s);         // 错误！！会乱码或崩溃

1

2

3

4

char s[] = "Hello";

cout << s << endl;

printf("%s\n", s);

puts(s); // puts 会自动在末尾加一个换行符
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4
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需求 变量类型 推荐代码 备注

读单词 (空格停止) string cin >> s; 简单方便

读单词 (空格停止) char[] scanf("%s", s); 注意缓冲区溢出

读整行 (含空格) string getline(cin, s); 最推荐，自动处理内存

读整行 (含空格) char[] cin.getline(s, 100); 方便，不留换行符

读整行 (含空格) char[] fgets(s, 100, stdin); 安全，但保留换行符

读整行 (含空格) char[] scanf("%[^\n]", s); 竞赛常用，不读换行符

解决方法：在读取字符串前，把那个回车“吃掉”。

总结速查表  

一句话建议：
如果是写 C++，尽量全程使用 std::string  + cin/cout  + getline，可以避免 90% 的字符串处理错误。

 

String 常见操作  
std::string  是 C++ 中最强大的工具之一，本质上它是一个封装好的动态字符数组（类似于 vector<char>）。

为了方便记忆，我把常用函数分为 5 类：基本查询、增删改、查找截取、转换、以及算法配合。

int n;

string s;

cin >> n;        // 输入 "10回车"

getline(cin, s); // 直接读取了 n 后面的那个回车，s 变为空字符串

1
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int n;

string s;

cin >> n; 

// 方法 A: C++ 风格 (推荐)

cin.ignore(); 

// 方法 B: C 风格

// getchar(); 

getline(cin, s); // 现在正常了
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函数 描述 示例

size()  或 length() 返回字符串长度 s.size()  (这两个完全通用，习惯用哪个都行)

empty() 判断是否为空 if (s.empty()) ...  (比 s.size() == 0  更直观)

clear() 清空字符串 s.clear();  (变为空串 "" )

函数/操作符 描述 示例

+  或 += 最常用：拼接字符串或字符 s += " World";  或 s = s + 'A';

push_back(c) 在末尾添加一个字符 s.push_back('a');

pop_back() 删除末尾一个字符 s.pop_back();

1. 基本信息与清空  

2. 增加与修改 (拼凑)  

注意： +=  支持 string 和 char，而 push_back  只支持 char。

3. 截取、查找、替换 (做题核心)  

这是算法题中最容易出 Bug 的地方，尤其是参数的含义。

(1) substr  (截取子串)  

语法： s.substr(开始索引, 截取长度)

注意：第二个参数是长度，不是结束索引！如果不写第二个参数，默认截取到末尾。

(2) find  (查找)  

语法： s.find(子串)

返回：如果找到，返回第一个字符的下标；如果没找到，返回 string::npos。

string::npos：这是一个特殊常量（通常是 -1 或极大的无符号数），用来表示“不存在”。

string s = "0123456789";

string sub1 = s.substr(2, 3); // 从下标2开始，取3个 -> "234"

string sub2 = s.substr(5);    // 从下标5开始，取到底 -> "56789"
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函数 描述 示例

to_string(num) 数字转字符串 string s = to_string(123);  -> "123"

stoi(s) 字符串转 int int a = stoi("123");

stoll(s) 字符串转 long long long long b = stoll("123456789012");

stod(s) 字符串转 double double c = stod("3.14");

还有 rfind()：从右往左找。（也返回的是首字母的位置）

(3) insert  和 erase  (插入与删除)  

s.insert(下标, "字符串") : 在指定位置插入。

s.erase(下标, 长度) : 删除指定片段。

4. 类型转换 (数字 <-> 字符串)  

做模拟题（比如大整数处理、回文数判断）时必用。

5. 配合 STL 算法 (排序、反转)  

string  支持迭代器，所以可以直接丢给 algorithm  库里的函数处理。

需要 #include <algorithm>。

string s = "hello world";

int pos = s.find("wor");

if (pos != string::npos) {

    cout << "Found at: " << pos << endl; // 输出 6

} else {

    cout << "Not found" << endl;

}
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string s = "hello";

s.insert(1, "123");   // "h123ello"

s.erase(1, 3);        // 从下标1开始删3个 -> 回到 "hello"

1
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string s = "bcad";

// 1. 排序 (字典序)

sort(s.begin(), s.end()); 

// s 变为 "abcd"

// 2. 反转

reverse(s.begin(), s.end()); 

// s 变为 "dcba"
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字符 含义 如何输出 (转义写法) 代码示例 输出结果

" 双引号 \" cout << "她说:\"你好\""; 她说:"你好"

\ 反斜杠 \\ cout << "C:\\Windows"; C:\Windows

' 单引号 \' cout << '\'';  (仅在char中必须) '

6. 字符访问与比较  

访问：直接像数组一样用 s[i]。

比较：直接用 == , != , < , >。它是按照字典序比较的。

总结速查  

做题最常用的其实就这几个：

1. s += c  (拼接)

2. s.size()  (长度)

3. s.substr(start, len)  (截取，记准参数!)

4. s.find() != string::npos  (查找)

5. to_string()  / stoi()  (转换)

6. sort(s.begin(), s.end())  (排序)

 

转义字符  
在 C++ 中，编译器会把双引号 "  当作字符串的开头或结尾，把反斜杠 \  当作转义的开始。

如果你想在屏幕上直接输出这些具有“特殊语法含义”的字符，就需要转义（Escape）。

C++ 的转义符是 反斜杠 \。

1. 核心保留字符（必须转义）  

最常见的情况是你需要输出引号或反斜杠本身。

// 3. 去重 (配合 erase)

// 比如 "aabbcc" -> "abc"

auto last = unique(s.begin(), s.end()); // unique 只能去除相邻重复，所以通常先 sort

s.erase(last, s.end()); 

11

12

13

14

string s1 = "apple";

string s2 = "banana";

if (s1 < s2) cout << "apple 在 banana 前面"; // True

if (s1 == "apple") ...
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转义字符 含义 作用

\n 换行 (Newline) 光标移到下一行开头 (最常用)

\t 制表符 (Tab) 光标移到下一个对齐位 (通常用于列对齐)

\0 空字符 (Null) 字符串的结束标志 (编程时很关键)

\r 回车 (Return) 光标回到当前行开头 (常用于覆盖当前行输出)

\b 退格 (Backspace) 删除前一个字符

注意：在 string  双引号里写单引号 '  其实不用转义（ "I'm ok"  是合法的），但在 char  里写单引号必须转

义（ char c = '\''）。

2. 常用控制字符（不可见字符）  

这些字符在键盘上打不出来，或者代表特定的动作，也需要用 \  开头。

3. 特殊情况：printf  中的 %  

如果你习惯用 C 语言风格的 printf，有一个特殊的保留字符：百分号 %。

因为 %  被用来做格式占位符（如 %d），所以想输出它自己，需要写两个。

cout：直接写即可 cout << "100%";

printf：必须写两遍 %%。

4. 进阶技巧：原始字符串 (Raw String Literal)  

如果你需要输出大量的反斜杠（比如文件路径、正则表达式），写一堆 \\  会看得眼花缭乱。

C++11 引入了 Raw String，格式是 R"( 内容 )"。括号里的所有字符（包括 \  和 "）都会被原样输出，不需要转

义。

int n = 50;

printf("进度: %d%%", n); 

// 输出: 进度: 50%
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// 普通写法 (很难看，容易数错反斜杠)

string path1 = "C:\\Program Files\\MyGame\\"; 

// Raw String 写法 (所见即所得)

string path2 = R"(C:\Program Files\MyGame\)";

cout << path2 << endl; 

// 输出: C:\Program Files\MyGame\
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总结速查  

1. 想输出 "   写 \"

2. 想输出 \   写 \\

3. 想输出 %  (仅printf)  写 %%

4. 想换行  写 \n
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