U RER V%S EIN =

Strassen &%

—. Strassengi%
PAEREL O(N?) EterIEEIR?

1969, Volker Strassenfti T —MEARAEREET O(N?) sapeiEek, BEERE
F0(nfo%) = O(n?87), WFERIA, StrassenfikREIERIFHRMLLBALES
(N >300) , tae LAHBRAMLS, TR REFEITHE.

Chapter 0 Preface
o BhH:

HEHER
SIER 3
LZEIaT
e
EW
F A

o EYE IR 19THERIRE GHENEFRITER) EF AL

R
(Edsger Wybe Dijkstra 5 KnuthF#FR3EATX NS H A K&
HLRHE O
Dot .. FEUhE SIS (1938-) |, 197TAEREEIRE, B

EAREH, PNESEHN, EIEEFRSTES
ESRARNSRE, £2HEE (ITETERZTZAR)
(The Art of Computer Programming) BI{EZ, i+EH1
HEAR RS TEXAIMETAFONTR & BEZE, fBERIXLLRY;
FAIA R NSRRI EMESHEEK. #
A "ATEREZR .

¢ Nicklaus Wirth 19848 & ¥ Pascalz % &% + HIELEH = 18
5

* BB AT LABRA MEEIRTFHE X XL AR R,

BERRHNZO, thEEERIRE (A BRSNS,
BES (0, 1) BERRFRREIEEE, BH—PHITXRAEE., #
B BRNEEE, XASMERE, S&Ek, BHRREEEE (5
EHNREZE] )

B ABEA—EIETHEE/ T EIRE: Nicklaus Wirth (1984

o HRfH- XF\Y/ by o =58 £, ERY) —Pascalzi, X AT E AN
BRp: . &Mﬁlﬂl#, RERET, X%EEL)%‘;&W@;EFglé;;EEQ "E:-Atnxcjj%&g%agmu&naa
8% + RS = 2= FERSE LW, B, W)
- KFRTENRHRAREIFTE. .
- BIEARAEE, BRI, hEREFN! uvr‘“”

(Ei£Bi8)  (Introduction to Algorithms) ZEFFETE T 5B HARM HIRRIX FIH BN SRS SEENES, (FEERD
Hr-Rl/RE (Thomas H. Cormen) | B/RET-BE/R7E (Charles E. Leiserson) . D& Z4H15 (Ronald L. Rivest) . 5aFliE
B (Clifford Stein) , B—KRFITT1990%, 2000 @HHRAE=HR, 1=

Chapter 1 The role of algorithms in computing
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e What are algorithms:

e Computing: information processing

e Scientific computing (modeling, computing, verifying )
o BEF: AR RN = EE
“ETRE" o WAEMEA, B AMIERTSFENES =
(flan: PR/ NEREEREFEI000NELSLRT? ##, #i hakiErs, #FEE, HEH. ) of
+ 1900, Hilbert (1862~1943), BREFHF R KRz, “BREFE—MERAMIRE (BXH , ﬂ
B EEERERTER? ”
« Alan Turing (1912~1954), 1931, undergraduate in Cambridge Univ. -
+ Before 1936, no scientific computing. Turing, A1 115 % & H 7 ¥ E @) B R AR, 1936.
+ John Von Neumann (1903~1957), 1946, first electronic computer.
o« B g IR
= CABIE” o AEANARES; BRSEFRCME.

ﬁi‘ﬁ% F—, BEGIESTRERESER, B, R NLEFSIE, BTRR
Exﬂﬂﬁﬁﬁiﬁﬁ@%ﬁ&%ﬂﬁﬁ%ﬂ. BRI S B K SR H AR 2R

ERISHPRS SRS, MENEESHIOITER. BROESRAR TP E, nEeRER ’
#ﬁ#ﬂﬁ BARRERT

e characteristics of algorithm:

The characteristics of the algorithm
« Output: atleast one.
+ Correct: An algorithm is said to be correct
if, for every input instance, it halts with the correct output. (8§EHN, BLRIEH)
+ Feasible (FJi7i%, AI4RTESCM)
+ Practical (feasible actually, SCfRRI{T)

« Incorrect algorithm
» might not halt at all on some input instances, or (F&EEH1)
» might halt with an answer other than the desired one (FHUBLERAIER)
» can sometimes be useful (if error rate can be controlled)

Chapter 2 Framework for analyzing algorithms

o JLFHEEH TR

TSRO EEE: RUSBITEE, NEE, ERY, RAM

Computing model (i+E#&E5Y)

« RAM, Random-access machine BEHI#ZENEE (Von-neumann, ;3 iE{RkSER) :
EAEHIAENAE, TERMEMAE TS Ht k. ChREREERIT SR,
B FEFAURTF AN BIERR T B RN,

. BERU (GRANFARR, MRITTENE) | RS8R, MENREES
TSR, [BISSTAFSCREEMA, R ARSIt EE:.FI_
FREAR, [EEIRTIETEER D REEA RS MMES IR

- NEH (BF, HEEBEENL) - TLEFRARWBREFRIHES. EElE
—HRIRN (FEER) N—REHENT, NEEZERET, HT—MTit
B RSP TR TIRIE.

. gtﬁiﬁﬂﬂ%%ﬂ (BFE/R, BERN L) @ —HMBeEimBR®EEs, TLRERNT

o

Chapter 3 Growth of functions

o LU A A% R B R R T s

o0x< ;,0=< ;0==, Q=2 ;, o= >
TPl P
For a given function g(#), we denote by @(g(n)) the set of functions

©(g(n)) = { f(n): there exist positive constants ¢y, ¢, , and n, such that
0=<cgn) =fln)<c,gn) foralln>n,}.

g b5

O —notation:  For a given function g(r), we denote by O(g(r)) the set of functions
O(g(n)) = {f(n): there exist positive constants ¢ and n, such that 0<fin) <c g(n) forall n > n}.

LT
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() — notation: For a given function g(n), we denote by Q(g(n)) the set of functions
Q(g(n)) = { fln): there exist positive constants ¢ and n, such that 0 < ¢ g(n) <f(n) forall n>n}.

AT R L5

o(g(n)) = {f{n): for any positive constants ¢ > 0, there exits a
constant n,> 0 such that 0 <f{(n) < ¢ g(n) for all n > n,}.

AL R T 5

e The w-notation denotes an lower bound that is not asymptotically tight. Formally,
define w(g(n)) as the set

w(g(n)) = { fin): for any positive constants ¢ > 0, there exits a constant
ny> 0 such that 0 < ¢ g(n) <A(n) for all n > n}.

o fRiEME & BRM & MM & RN FRM::

S (n) = ©(g(n)) and g(n) = O(h(n)) imply f(n) = (h(n)),
S (n) = 0(g(n)) and g(n) = O(h(n)) imply f (n) = O(h(n)),
S (n)=X(g(n)) and g(n) = Q(h(n)) imply f(n) = Q(h(n)),
S (n) =o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)),

S (n) = o(g(n)) and g(n) = o(h(n)) imply 1 (1) = o(h(n)).

o Reflexivity (B&EM)

J(m)=06(f(n)),
J(m)=0(f(n)),
J(m)=Q(f(n)).

e Symmetry (XFFRTE)
J(n)=0(g(n)) if and only if g(n) = O(f(n)).

e Transpose symmetry (2 %FR14)

J(n)=0(g(n)) it and only if g(n) = Q(f(n)),
J(n)=o0(g(n)) ifand only if g(n) = (1 (n)).

Chapter 4 Recurrences
o UHELI A 5 A% BE B T

How to obtain asymptotic “®” or “O” bounds on the recurrencesolution?

e Substitution method (& ;%) : guesses a bound and then use mathematical
induction to prove our guess correct.

e lteration method (GE{XJ%) : converts the recurrence into a summation and then
relies on techniques for bounding summations to solve the recurrence.

e Recursion-tree method ( a kind of iteration method )

e Master method (EFE, FEHE, TREUE) : provides bounds for
recurrences of the form 7(n) = al(n/b)+fin), wherea>1,b>1,and fin)isa
given function.

L4 Elfjj‘?f & ﬂ@ﬁ&
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T(n)=aT(n/b)+ f(n),
@(nlagh u), f(n)= O(n(lognu)—.t:)
T(n)= @(n'“gh”lgn),f(n)= @(nhgh")
O(f(m). f(m)=0n"****) and af (n/b) < cf (n) for large n

de>0
o<l

o T(n)=9T(n3)+n
a=9.b=3 f(n)=n = n**"=n"*"=n*=0(n")
= f(n)=0(n"®""),whereg=1 = T(n)=0(n")
e T(n)=T1(12n73) +1
a=1b=3/2f(m=1 = n=c=p=' =y =]
> f)=0m*) = T(n)=6lgn)

o T(n) =3T(nA4) + nlgn
a=3b=4 f(n)=nlgn = n"%"=n"%=0(n""™)
= f(n)=Qn"e**), where & = 0.2, and for sufficiently large n,
af (n/ b)=3(n/4)lg(n/ 4)< 3/ Hnlgn=cf (n) for c=3/4
= T(n)=0(nlgn)

Chapter 5 rand

Chapter 6 Heapsort

Chapter 7 Quicksort

QUICKSORT (A, p.r) PARTITION (A, p,r)
1 ifp<r 1 x = Afr]
2 ¢ = PARTITION(A, p.r) 2 i=p-1
3 QUICKSORT (A, p.qg — 1) : for fifj[;’]tg" =1
RN i . Alj] =x
4 QUICKSORT(A.q + 1.r) s i
6 exchange A[i] with A[f]

exchange A[i + 1] with A[r]
8 returni + |

i

2

QUICKSORT(A, p.r) PARTITION(A, p,r) @ n '4
1 ifp<r Ixo=Alr] iy |
2 = PARTITION(A. p.r) 2 i=p-1 = :
4 P i ® afsT (3]s 6+
3 QUICKSORT(A. p,q — 1) 1 for ’_rj[(’]t‘:" -1 S SERRE
4 K CORT i 4 mwAy|=x i J r
i QUICKSORT(4,¢ + 1,7) 5 =i+l (© 7\1\1\5\«'4
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r] Liad / d
8 returni + | @ (Y IEE B
p i J )
SRS arION B, 28 (&) meges | @ CLIEEEEL]E
STFHE (FWc) A, i+ REZEMTEAT A, r : J d
B p -1 BUTENFETF A, HERE A - apty @ CIEI K
AP, P i
Alp ~i] L < A[r] WS, STRA+11541r), LMRIEAL] ZHIRITTEREBLLE N, (@ OEE g
A~ ], > A | ZETERER. r I
(hy HEE 2R R
swap(A[i+1], A[r]), when termination 0 <7 <r-1
p i r
® WEGE

o At A RHR:
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RANDOMIZED-QUICKSORT (A, p. r) lntumvely...

1 ifp<r *
2 ¢ = RANDOMIZED-PARTITION(A, p.r)
3 RANDOMIZED-QUICKSORT(A. p.g — 1)

EEETTEE - EEETTermee

4 RANDOMIZED-QUICKSORT (A, 4 + 1.r)

RANDOMIZED-PARTITION (4, p,r N —
i NG 8 1RHK, BAIT | NTTR

1 i = RANDOM(p.r)

2 exchange A[r] with A[f]

3 return PARTITION(A. p. 1) ]

F2RHK, NEIF2NTE (BEM 2-14)
PARTITION(A, p, r)

1 x = Al I*I*Htltl*l*n*-

2 i=p—1

3 forj=ptor—1 FEIRDK, NEMTFI M TTE (E';fE{ﬁ 2-14%)
4 [ ifApT=x )
5 =TT B LRHE, BT 2 AR GURAL 1)
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r] 2l =n => k=lo(ntl
: 2%1=n= = lgf )

8 e =

return i + | BRSREESE n-1 KR = O(nlgn)

Chapter 8 Sorting in Linear Time

SNERR" | \\H

mm—m |C :
(ERBL AT
M7, B4 B )
EHNET)

o JFGITE:

The ith order statistic of a set of n elements is the ith smallest element.
v the minimum of a set of elements is the first order statistic (i = 1).
v the maximum is the nth order statistic (i = n).

v A median, informally, is the “halfway point” of the set.

[ 6.12/5/9 10 8 7

Minimum: 2 (1 IFESTER)
Maximum: 12 (nfIRFEFITE)

o B [H Rk
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e The general selection problem appears more difficult than the simple
problem of finding a minimum.

e Yet, surprisingly, the asymptotic running time for both problems is the same:
O(n).

T B m *

RANDOMIZED-SELECT(4, p, r; iy

1 ifp=r

3 q=RANDOMIZED-PARTITION(4, p, r) \\
4 k=q-ptl '\m\\ 1 BEHISEE, $KE) A FRAIE k INITEER Alq)

S ifi ==k //the pivot value is the am:

6 return A[q] — J// FEBR k-1 ANTTERLE Alg) AN, 5Bk KBITTERE Al
7 elseif i <k

8

9

return RANDOMIZED-SELECT(4, p, g-1, i)
else return RANDOMIZED-SELECT(4, g+1, 1, i-k)

T(n) = T(max(k-1, n-k)) + O(n)

e Worst-case running time

T(n) = T(n-1) + O(n),
O(n?)

e A special case
q = (r-p)/2, then
T(n) = T(n/2) + O(n),
O(n)

e Expected running time ?

Indicator random variables, ®(n) 7 *

LiEE— MR

MEAC ISR TRIEAEE. XMNERTURRENN, BIURE— TR, BE— N TRshEanE
TTE.

289K

RIEEETRBHAETHY, FEMENTEENTRBUTEENEN, MEATHETEENTRET
FERANAN, XMIRS tRizHF Q RD KSBIER.

3.3

RIBOXER, BERETRIME.

MREETEOMBIETFR (EARARSIEEMOFFR) , NEETEREHNIIE.
MREETRAMVENTK-1, NBNIBTFEETRNANTFHEAT, HEEANFHATBRAERK.

MREETRAMVEATK-1, NBNIBRTFEETRNEMNTFHAS, MEECNFHRAPBRASK, 7
BrEZREEMNFHRANANI (BALMNFEEPHRTRS R TEEREVNIZ) .

Chapter 9 sort order
S

Chapter 15 dp
o BNTFLEM: NEMUEERHZ—
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SO\
Optimal substructure (Ex{fiFL5H) : @e

+ An optimal solution to a problem (assembly-line scheduling, finding the fastest
way through station S; ;) contains within it an optimal solution to subproblems
(finding the fastest way through either S, ., or S, ;).

EIEE R R AFE R H TR &M, p,contains p,within it.
+ Optimal substructure is one of the hallmarks of the applicability of dynamic

programming.

mETFERRHNSRANENEERRZ—.

o n RKIBSTH mi 4L

e The # of BST with n nodes is Q(4"/n’/?)
(Problem 12-4)

Chapter 16 Greedy Algorithm
e RINTFEM:

No general way to tell if a greedy algorithm is optimal, but two key ingredients.
BERUERANERRATOCEEZRTRM, BARNMELES

1. greedy-choice property Z/LEEE M (Soluton o 5,)

= (solution to §;;) U{a,} U (solution to S, )

2. optimal substructure ~ FRLTLEH

% =
. L S;
FRIBHRME + FIEFE 4 [RRIRNEMLRE
o HLHMdpH X -
Dynamic programming
o RETEMTEE B LR ©O00®
(SERRFITED) C }"@ o B
o KEREER: bottom-up ® & & E)
DP for Activity DP for OBST
Greedy

o BEiEEE BEIMFEERTKE
o REBEIR: top-down

#E = R RN T ——
GA for Activity =+ -

iﬂﬁ%fﬂ&ﬁa@%{mﬁuﬁi% }4. "
o NHHEBMOIE KX
PHEBRRE R DERERYE

o O-1EBERR TROEEREME

o KEDEHERRR, TRMBRBRLNNE v, v,
BERFFHERE (v, w,> v, /w,,, for all i)
o Time: HifF O(nlgn), EINER O(n)

e Huffman#i#g:
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An important application: the design of data compression.

Huffman codes, F§XSIRHG

19514, IGREEMITiEEL, SIfRobert M. Fanof{H—1E
HHRENEE "SHEEMNTHERED" . BXERNTETE
PR RMRBNIEE, FHERTRINERRENN. B8
FERERRLNGAERXN, B% TREEZShannon-Fano
ISR —E TRA TR, 19528, BRE8ART (—ia
BIRNSRRBINEE) . BARRZAHUffmanizia,

A method for the construction of minimum-redundancy codes

DA Huffman - Proceedings of the IRE, 1952 - ieeexplore.ieee.org

... In order to avoidthe use of the lengthy term "minimumredundancy,” this term will be

replaced here by "optimum.” Itwill be understood then that, in this paper, "optimum code’means .
Yo (77 99518 WIIMARE: 10212 BXCE A 9 MNES

Chapter 22 & %3 Al
o ARBEF & AVEESEEZIAE AL

e Memory
+ adjacency-list (AL) O(V+E)
« adjacency-matrix (AM) : ©(172)

4 EXE (David Albert Huffman,
1925-1999), 1999510517 HEEAEE
t, ZE74%, BEFAERIBIER,
MHEHRE, BESFERAEHNEL
AR KIT A ARTEIC.
EXRSEMIT—ETIFRN67F, Ziaf
ENIMMAF Santa Cruzgpke, Rizikit
SR ZFRMEMAA, 1970—1973F(F
REE, 1994FEXSIEI,
BRTEXSHL, EXSEREMSED
FECeNE, thanfbiait e — WS
ZEEBEIAS RRX EERREE
i, AfRGZAELEE L.

o AL: WAKBENE, &=8; BESW, HEFEHEIEE mwee. wame. oba 754 )

o AM: PEREEER

o BIZEMRSCH, KT RANEIESS, (KR RENEFSHES.
o WNSEAHSTL (Standard Template Library) , ECHGESS, HRMEMEESISE

FEERERAG (EFHEdREEnENERS) .
e BFS/DFSH} AR 5 F & BE ST

Aggregate analysis: O(V+E) !
RESH: S TRNNHAE—R, .
BRIMGN—IR 4
5

[ 517 6

Zo L ;
¢  OaEiEn i
10

S em WSV e 4

iy 13

14

15

16

Aggregate analysis, REEDHT: RAEER, ASEABIFTFHR
B ERT HTRIEER (ARETAIFRE, A [ WE
Nim, HAMERWESRDER—X. Tl Vv, Fraihsie.

O(V+E)

BFS(G, 5)

for each vertex u € G.V — {s}
u.color = WHITE
u.d = oo
. = NIL
s.color = GRAY
s.d=0
s.m = NIL
Q=40
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.color == WHITE
v.color = GRAY
vd=ud+1
v =u
ENQUEUE(Q. v)
u.color = BLACK

DFS(G)
1 for each vertex u € G.V

2 u.color = WHITE

3 M.t = NIL

4 time = 0

5 foreach vertex u € G.V

6 if u.color == WHITE
7 DFS-VIsSIT(G. 1)

DFS-VISIT(G. u)

time = time + 1

1

2 u.d = time

3 u.color = GRAY

4 for each v € G.Adj[u]

5 if v.color == WHITE

6 v = U

7 DFS-VISIT(G. v)
8 u.color = BLACK
9 dime = time + 1

0 wu.f = time
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o FENAEFRFERdagRIERBHZ TR,
o —LNA: RIEEE (GHRINEF, AERRENE—RAHTIN
SRME, BEXNE) [, HOAE ..

11716 (@ndershorts) (Sosks) 1718

e P
(watch) o110
12/15 (pants » (shoes) 13714
(shird) 113
o7 (el
(tie) =

You Song, etc., A Microservice-based Multi-cluster Computation
Platform For Space Mission Design, 8th International Systems &
Coneurrent Engineering for Space Applications Conference,
Glasgow, UK, 2018

Chapter 23 5 /M B
¢ Kruskal & Prim:

Kruskal: RE&xFL, 6 T# BB RG0S
Prim: 4% # % B RG34

Application: Electronic circuit designs (sFezigit)

Algorithms: Kruskal , Prim (& &smaeamm)
o Kruskal (BHi-5/R) BEEBERIORT, DEUREESIEES, WHREGRAMNMKSE
o Prim (BB BENTHSE, DNEHEESnBERaE—L

Chapter 24 H.J5 £ 45 %
o BB E: BFS

BFSE]FHTK#E—1NTo
NERNSREER

o BT EE MRk

o Optimal substructure: Shortest-paths algorithms typically rely on the property that a shortest path
between two vertices contains other shortest paths within it.

BRI EE RN IR

o Lemma 24.1 (Subpaths of shortest paths are shortest paths)
Given a weighted, directed graph G = (V. E) with weight functionw : E—R ,letp=<v,, v, ... ,v,>
be a shortest path from vertex v, to vertex v, and, for any 7 and j such that 0 </ <j <k let p,; = <v;, vy,
., v;> be the subpath of p from vertex v, to vertex v, . Then, p, is a shortest path from v, to v,

Proof ... 2 Ps
Vo~ N V; Vj\/\‘v,c

’

P2

Poi Pij Pjk
Vo A W ~e Y e 1k

P = Pypyp; is shortest, = P, 1s shortest,
thatis, p = 8(v,, v) that is, p, = 8(v;, v))

o MAHLERAE:
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Relaxation (actually Tight): RS4RI (v, v) FUTHASHIRME, BEL INITIALIZE-SINGLE-SOURCE(G, 5)
B s B v RUBEES vd R (RIE) . 1 for each vertex v € G.V

v.d = oo

BT RS E BRI s

IHB u—v TS, vd A
97, BD dis(s, v) BN,
RELAX (v, v, w)

5 2
S 2 Yy—"sy I ifvid > u.d+wu )
2 v.d = u.d+w.v)
= 9: vd 3 v =u
“e\*ﬂ“‘(\o

ARSI B IR 12, FRA stk 9F2, SIELEHSERIE, EE
REMDE "FISRD" |, LFRERCA "RISEXRE . AENS/ M EEESER
INITIALIZE-SINGLE-SOURCE, #ZEREME—&EibiiTrelaxiZ(E.

o B R B AR ARRA Bt B R R
BRI

o Triangle inequality, =FAZ, (Lemma 24.10)
For any edge (1, v) €E, we have d(s, v) < d(s, u) + w(u, v)

« Upper-bound property, @M (Lemma 24.11)
We always have v. d > d(s, v) for all vertices v € 7, and once v. d achieves
the value d(s, v), it never changes

+ Convergence property , WZSUEME (Lemma 24.14) Relaxation
3 , i ¢ . , ifud=o , 5 2
Ifs~u—visa sbortesl path in G for somei(u‘ V)ETV, aimd if z{.d— d(s, u) at any Sy v
time prior to relaxing edge (u, v), then v.d = d(s, v) at all times afterward \/\_/

B8 s~ u — v B—HRRIEER, WESD(w, v) BHTHASDE], 9: vd
ud IREIRIGEER, B wd=3&(s, u), NURSA(u, v) BITIAESS
vd IXEIRIERE (AIRIERREEKH) |, Blvd=4ds, v)

e Bellman-Ford®%: BFHE
oV B AR ER B
WS RE: O(VE)

BF algorithm solves the single-source shortest-paths problem in the general case in which edge weights may be negative, cycle may exists.
BFEX, BANEE (RFESONAE) @ MIRRETERD, #33
BNRR, SFTERGLEHI TR,

BELLMAN-FORD(G, w, 5)

| INITIALIZE-SINGLE-SOURCE(G. 5) INITIALIZE-SINGLE-SOURCE(G . 5) RELAX (i, v, w)

2 fori=1t(G.V|—1 s/ 1 forcachvertex v € G.V 1 ifv.d > ud+wv)

3 for each edge (u.v) € i i’i - Or\_c” 3 L“i . ’:}"/ )
4 RELAX (1, v, w) //H3 4 sd=0 ’ . =

5 for each edge (u,v) € G.E

6 ifv.d>u.d+wv)

7 return FALSE R .

8 return TRUE Running Time?

Relaxation

5 2
S U ——= 7V

9 vd

BFEZ, BRIEE (RFERROIEAE) « WRRETED, SNSIRR, MBIt TAEE.

Running Time: WEANTRR (3 V-1 MRS, %2 709ER) , AR TR
SIRIE (L EKW, $B31TR0ER) | Bk, HUTEdEN O(VF) .

BELLMAN-FORD(G. w, ) INITIALIZE-SINGLE-SOURCE(G . 5) RELAX(u, v, w)
1 INITIALIZE-SINGLE-SOURCE(G. 5) I foreach vertex v € G.V 1 ifvd > w.d+wv)

2 fori = 110|G.V|~1 //@mis 2 v.d = oo 2 vod = u.d+ w.v)
3 for cach edge (u,v) € G.E 3 v.r = NIL 3 v =u

4 RELAX (e, v, w) //H:3tih 4 5d=0

5 for each edge (v.v) € G.E :

6 ifvod > u.d + w(u.v)
7
8

return FALSE | oL EE)’¢
= @ 4 N g Relaxation
return TRUE ] 2 X

f 5 2
WNEERIAE (ALURER | ) =) ) S u
(. WHRERH 1, HETER
IR, DZELMEE) |
B AR RITRAR.

9 nd

o F T Topofl & TSHIE
HREEEN XA M T B (7] BUA SO
a2 OV + E)



By relaxing the edges of a weighted dag (directed acyclic graph) G = (V, E), (supports negative edges, but acyclic),
according to a topological sort of its vertices.

EEBRCARE (TLBERA) XEEFIER, STt ThiEF, &
[ER S TR .
, o ! i DAG-SHORTEST-PATHS (G w. 5)
1 topologically sort the vertices of G
2 INITIALIZE-SINGLE-SOURCE(G, s)
3 for each vertex u. taken in topologically sorted order

4 for each vertex v € G. Adj[u]
5 RELAX (1, v.w)

INITIALIZE- SINGLE-SOURCE(G, 5)
1 for each vertex v € G.V
2 v.d =00

3 V.t = NIL
4 s.d=0 Relaxation
RELAX (1, v, w) 5 2
: S—""u
1 ifv.d>ud+wuv)
' 2 vid = u.d+ w(u.v) 9 nd
© 3 VT =u

e Dijkstra¥ it & gotoF Eit:
HEgE 0 T8 38 A ) 1B
KI5 O S
WEEE: O(V + ElgV)

The running time of DJ depends on how we implement the min-priority queue. It
may be

0(2), OV + ElgV) , or O(VgV + E)

o Dijkstra 8% BERBEIEREAIERE
(EZRINZAFRE) HIREHSEERE. ;

o 241 BF/TERIRRRENE " A "R AORSEERIRER

[t Bl
Anote on two problems in connexion with graphs Edsger Wybe Dijkstra
EW Dikstra 1930/5/11-2002/8/6
Edsger Wybe Dilkstra: his life, work, and legacy, 2022 - dl.acm.org 1972FEREIHEE
We start the construction by choosing an arbitrary node as the only member of setA, and @ RE “gotoFEL”
by placing all branches that end in this node in set Il. To start with, set | is empty. From @ REESENPVERE
then onwards we perform the following two steps repeatedly. Step 1. The shortest branch @ W*;7 ﬁiﬁ? [E%E
of set Il is removed from this set and added to set I. As a result one node is transferred g ﬁ%ﬁ?&%ﬁ%ﬁ
from set B to setA. ® THERERGRQTHEMTES
B ACM Digital Library SKnuthHiFARINZMEHE
BERRITENEZROA

T iR 00 3IA WEIAR: GEI2D) IR i 99 MES
o B4 WENNT
summary Ak L

. BEROBEEENERREA e — -
. Eﬁz:%it s Triangle inequality topo sort v/

« FRSthRIE Dijkstra v
g u
« BIMRFEBAT I
+ DFS and BFS et it BF topo sort
BF

5
o SRR S U YR -
\/}_M/' E[35ibu] ggkst ?ojpo o
o SAEE B
« Bellman-Ford(BF) &% ((BFA, JEERIFRER)
« ETHRINEFRIBFEE (ATEIERA, (BARBRFIAEEEdag)
« Dijkstra(D]) Bi% (ROKRES, SIMAKEAG) (FIREE, {(EFEEEHN)

o EREDNT RESH

Chapter 25 Floyd

e Floyd-warshall i /R %5 [ (% 3 P 6.«
A2 : O(n?)
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The structure of a shortest path
o The Floyd-Warshall algorithm considers the intermediate vertices of a shortest path, where an intermediate vertex of a
simple pathp =<v, ,v,, ..., v, >Iis any vertex of p other than v, or v, , that is, any vertex in the set {w, ,v;. ..., v, }

- / perrre = .
BERER p NimmE My, Et=Ep 8 "28)" s
[PDF] Algorithm 97: shortest path
_ RW Floyd - Communications of the ACM, 1962 - dl.acm.org
FI Oyd warshall ;E ¢ onlment This procedure will perform different order arithmetic operations with b and c, putting
3 the result in a. The order of the operation is given by op. For op= 1 addition is performed.
Jﬁ:ﬂob'd , HIFE % (857 09318 EIRRY: BEXE FE 3 MEA
H Fwarshalli£ H
Vard Atheorem on boolean matrices
Eg E:.F?E/J\%EBEE(J S Warshall - Journal of the AGM (JAGM), 1962 - dl.acm.org
(SO @’ . Given two boolean matrices A arid B, we define the boolean product AAB as that matrix
1%5'23 ° whose (i, j)th entry is vk(a~/, A bki). We define tile boolean sum AVB as that matrix whose (i, j)th ...
* M W3R HIIAERE: 1B A 7 AR

L ﬁ&d@\% %ﬂ:dp
RIS SE 4, j 2 I8 W] DAZE I R 6 T i

p BN i Bl j RIRABRRAR st-path-o(i.j), "ZI8)" T from {1.,2, .. k}:

o YR A ARRER p EEOTRA, W st-parh-(i, j) MZBEIRRETF (1.2,
. k1}, Bp, ZI8THsS from {1.2, .k} B st-path-6(i, j) FEEZIEIR
/M= from {1.2, ..., k1) BY st-path-6(i, j):

o IR kREEp FTRR, W st-path-o(i, j) AFEEBOHARE i -k 2 ),
Heh p BZETRERETF (1.2, ... . k1) B89 stpath-06, k). p, FER,

A recursive solution to the all-pairs shortest-paths problem
Let d,(,“ be the weight of a st-path-6(i, j) for which all intermediate vertices are in the set {1,2, ... , k}. Whenk =0, a
path-p(i, j) has no intermediate vertices at all. Such a path has at most one edge. We define recursively

all intermediate vertices k=1 allintermediate vertices in {1.2,... k — 1

w;; ifk =0,
i min (d P d$V +d* V) itk =1,

P .J\ n\(cnncI. L2.....k}

Because for any path, all intermediate vertices are in the set {1,2, ... , n}, the matrix p® = (4(") gives the
final answer: ¢! =s6.j) forall i, j EV.

PRI i B j AUBITERE st-parh-0i, ), p i) "ZIA)" TR from (1,2, .. .k}, HIKEE (IU&) A 4

WS kA REER p EROTRARR, W st-parh-0(i, j) ZIBTRS3RET (1,2, .. k1), BD, ZIETAR
from {1.,2. ..., k} B st-parh-6(i, j) FRBZETRAR from {1.,2 . ... . k-1} B9 st-path-6(i. j):

WISR K REER p LRI, W se-path-0. ) EAFSEBSHARE i 2 2, Hehp, BZAMRET
(1,2, .., k-1} B9 st-path-6(i, k), p, FIE,

o Floyd4: % B S Bt ) B 12 i
RIGZiA, TTLL O(n) SR8 R # 12

g% )Wy ifk =0,
7= Vi 400+ ) itk 1.
Constructing a shortest path  (FIEERIGERR)
We compute a sequence of matrices 10, 1D, ... | [T, where IT=I1 and we define n{(/“') as the predecessor
of vertex j on a shortest path from vertex 7 with all intermediate vertices in the set {1, 2, ... , k}

m,® FTM i B j IERAERRE (ZEIHAR from (1,2, .., &}) 517 B9RIIRTS =

@ _ JNIL ifi = jorw; = o0,
v i ifi # j and w;; < oo.

k1) e e - k—
7(,5 Y lfd,g Vo< dlf RS :ik(, v,

N(k) _ i J
k=1) e lk—1) k—1) *k-1)
T ifd; " >dy " +dg

i

ﬁﬁ@w,
() kTR L, BITRARMZARAR. 2, k1), B 0= e
(@) KEEBIGEE L, iy o HIBIE ) BRI ko b ROBIIE 7,

Chapter 26 & ki

. BAR: NIRAMBHRAMRENR, s/ \oElakRE.

e Capacity: a maximum rate at which the material can flow through the conduit
FE BEEEINGEK ate (BUMNEHNEE)
e Flow conservation: the rate at which material enters a vertex must equal the rate at which it leaves the vertex
FFE: RA—TRA material = FEHIZIRAA material
e Maximum-flow problem: we wish to compute the greatest rate at which we can ship material from the source to the sink without

violating any capacity constraints

BRAMSE: AREAFER, WRREICREE ship NEAFE (BRUREERT, B rate)

o Ford-Fulkerson’5 % : #8458 70 2k /7 i2:
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BIHERE: OF- f*), f* &K
T KET, F-FREIERAL
RERE: AR, R CAHEH IE G

A “method” rather than an “algorithm”. ({E4¥-185e#%/5i%, HFord FlFulkersonF 1956 2HAAX)
The Ford-Fulkerson method depends on three important ideas:

+ residual networks (RIRRML (GREEMLE. KEML)  ZOBHE: FaE—Lih, EH HFEE
EINESNAR, IXEEONFADRL TIREBRIEANES IR [185EER] )
. augmenting paths (i‘%‘fﬁ%&@, F.%‘F‘%E?é) Ednmlmn\@su;kix‘nmn

"

Vancouver <0 Winnipeg
o cuts (E. £HE. E) o [ O
3 e &
&)
Calgary Regina

FORD-FULKERSON-METHOD(G. §,1)

1 initialize flow f to 0

2 while there exists an augmenting path p in the residual network Gy
3 augment flow f along p

4 return f

Residual networks
residual capacity )
e c(u,v)— fu,v) if(u,v) ek,
(REEE: ENAK) cr(u,v) =4 f(v,u) if (v,u) e E ,
1 _EREEIENIN AR g
RAGRSEZICEERR ——

’> 122

e G %

W U

/3\/} = 1O)

& »
K3 (7)) I i
NG TN

5 - 0 otherwise .

@
Example: let u < s, v «<— v, there are c(u, v)= 16 and f{u, v) = 11, then we can increase f(u, v)
by up to ¢, (u, v) =5 units before we exceed the capacity constraint on edge (u, v). We also wish
to allow an algorithm to return up to 11 units of flow from v to u, and hence ¢, (v, ) = 11,

e E-K®#:: (Edmonds-karp&ik)
TEF-FE il FHBFS 4R 45
B AREE: O(V - E?)

(E-KEESEbRmt A F-FRE I — Mol (B —M ARSI |
Uk, F-FRRNT5:

EDMONDS-KARP(G, s, 1)
1 for each edge (v, v) €E E
2 flu,v] <0

3 while there exists a path p from s to 7 in the residual network G, (using BFS)
4 cf(p) <+ min {L‘/(tl, v): (u,v)isinp}

5  for each edge (u, v)inp

6 if(u,v) € E

7 N, v] = flu, v] +¢fp) e

8 else /[v, u] — /v, u] - cAp) »»_,_--*"‘J

oV )

HIERRAR: XA (I i8E p FRsvERD) .
B p EINR—R, RBIHK, 1 (u,v) BBOYRIEAXRA (FA s BIR=
v RSGEE R ETTEINTREEI) ; HERD; EKEENTPALEE

O(r-E) (REnLiink, FRAEMBE, BORRE) . SRIEEREmAmigm
RAHE(E, BJEA OE). RESE O(VE).

LR Yefim Dinitz F1970543, FFEH Jack Edmonds FlRichard Karp F
19726 &R, E-KENESERRRRF-FEIA—FhaoH (k—FREAsCH) |
I, F-FRRATTE!

Chapter 33 it & JL{
e HAMMAS:
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o A convex combination(h2H5) of two distinct points p, = (x, ;) and
P> = (x5, ) 1s any point p;y = (x5, ¥5) such that for some « in the range
0<a<1, we have
xy=ax;+(l-a)x, and y=ay +(1-a),. "

We also write that p;=ap, +(1-a)p,. [

e pj is any point that is on the line passing through p; and p, and is on or
between p; and p, on the line.

B p, fl p, BOVASE p; R pp, LIEFE— R (BiRRA) .
o M ﬁ W2
Graham: O(nlgn), #KFE Fil//Eilm) s, xR AT
Jarvis: O(nh), hJy'ME LRI AHE, W3R A /)
AndrewH 5 AGraham ) — /N8R, AEUCR—AN2F5%
Some algorithms that compute the convex hull of a set of » points:
e Graham's scan ({8&/2i#), runs in O(nlgn) time
e Jarvis's march (B4R, runs in O(nh) time,
where A 1s the number of vertices &)
of the convex hull.
e Additional several methods I3

2

n incremental method, O(nlgn)

BEx (BRIEn—N, EHEE0g) o
n divide-and-conquer method, O(nlgn)
» prune-and-search method, O(nlgh)

B-HRL RROE RS, AERTES

Chapter 30 FFT
R T4 T8 Z I

s(t) = sin(60mt) + sin(30mt)?
s(¢) = sin(60xt) + sin( 307t) + sin( 90mt) ?

S(w) = fe"""‘s(t)dt

o FTROEATEEARMEMEL, FUNASTRGEUTES. MEM
THE—MERORY TS, THHHE R RN LA E MR RERL
EUMEIBARERS . ETFORRTEL, BEHTRAASHTED

oo A Lo, S BRI E M 2,
L EESS 9Ex BEH (Baon ke ¢ NFLE, MRRETRESERENQANAR. ELHRIENE ERET

Baptiste Joseph Fourier, 1768-1830) , B, SRR AMER, X—EFRUE EMETRAEAEAN &
HEEMYR, MEER, 76FIAARE WER, MRNFAMEEMERAGERFOMR, EETMIL0FRRI
FRER, 1830458 168%FFER. BH, it ATRB R B EDREE .

BUFSENMNERRL. ERAMRER o FFLF, "SHEIEREL, REEEIHEYMBDEL05HNE
? _‘ggﬁgg“gﬁggggf%ggﬁ BSGHER EARERA B, LALERE Fib i B R MR AR
SEREL TR, SFAETF, MEFFSHEHNME, AR EROTRES, KM

AT INRFMEMEREHE T REFOTFH.
o BILMHIE:

ZNAR (12085 - 12685) ,
i, HETEN (ST)IZE
FR) . BREEEER, 5
Fia. Wi, KHEITHRATT
FIASR,
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3

-1

e A coefficient representation of a polynomial 4x) =) ax/
=0

_ T P _1268m)
a=(ag,a,, " ,a,;)", column vectors T e
£B) . BREEHYR, 5
h. JiE, HEASRRT

e Convenient for certain operations. For example, HETAR,
o evaluating A(x) at a given point x, , takes time O(rn) using Horner's rule:
Alxo) = agtxg( artxyl ayt - +x(a,,tx(a,.)) ). EE RS

o adding two polynomials represented a = (a,, a;, -, a,.,)" and
b=(by, b, -, b,,)". takes O(n) time: we just produce the coefficient
vector ¢ = (cg, €1, =, 6,.1), Where ¢;= a+b, forj=0,1, -, n- 1.

o Hib:

e w,=¢* :principal nth root of unity (8247 n REHRAIETT)
e e=cos(u)+isin(u) [EHIAT)
the exponential of a complex number
@f =¥ = cos(27k [ n)+isin(2xk / n),

k=01,-,n-1
e All of the other complex nth roots of unity are Bt
powers of @, . The n complex nth roots of unity ﬁﬁi‘g’f@éﬁﬁg
(@), k=0,-,n=1} form a group. w, EERWE—E.

KRREBEHS-MPR (18114:108258-1832458310) , 18111082584, EEHMFR. MRH

éa S S ENEE, R OAIRRAT R FERAOSIZNE, AL ART—SE%T

s BN, A2 AIPRES, SHESAEN ‘B W/EIBER (Galoks Group) . FEHRIE

8 BELFAARNEER IR ITIAR, SSRNSRIREARY, SN, SHERA,
\ﬁ/ S, PRI, 21 SR — Rt

U A WSRO R, BRSSP REL, EERABSR0E

A L —, RGBT AR 2SIV ARR, TR TEARER, PAT S

SXRIMFEREEAYS: SEAERRATR SR .

o BERMMAN —— KW AK:

BEMAIAT: RAAR

e'=cos(u) + i sin(u)
er+1=0
EENT:
1

REENEREHN c STHD. BAUKIIKR, A2 CRE0RE, NERCAIEE, EEEETTE?

2. REBNEH » STHP. HRISTEOTFENHELEE. "SEANAN EEEFEE=D?
(EF = Fl e B MRERAILEL )

3 %%%géi?i+%?ﬁ*.m%%§§:@ﬁﬁ%ﬁ%ﬁ%ﬁﬂ%ﬁiﬁ*,M%%MEmﬁﬁﬁ,

ERRIHIINE. .

4. REENRIUER@E. Tt 0, B 1, 2EEE, ], BOESTR. NRFETEX (AHH)
BB, (FREHESIIEHNERY.

5 i%%gﬁﬁﬁimﬁﬂ¢.ﬁﬁﬁzﬁﬁmimﬁﬂﬂﬁﬂ?$ﬁ,ﬁﬁﬁﬁmm4ﬁ§5mﬁm8ﬁ
: FATE.

6. ENAXMEETEERE. WRES/NFH, MREE/FMENHFME. 57NS, TLUSHER
EEAS; 570, 1, ALMERIRMART, 57 AT ERE, tbRE=RRi 57 /METE
¥, FEARESEMN, BRETIRE/RN 4 T8, HENZESEON; BT « WETHRS, a7
TR EEEEREE.

L4 DFTB@%X:
ZHAERKAREE (BAERD

W) (17w
=l -1
M=Sax T T e G0n
=0 R o )

el
L

Yt ey

o wish to evaluate a polynomial A(X)=§UJX‘ at x = o.0.0 e

o without loss of generality, assume thé?jn =2m if not, leta,,, =0

o Discrete Fourier Transform (DFT): let 4 is given in coefficient form: a = (ag, a,,"*, a,.,)",
let x, = @f , define y,, fork=0,1, -, n-1, by

(R T A T a
n-l -1
" L6 @
n=A@)=2 a0, |7 <7 O : =
2 S o
Yt 1 o)Ln—l\‘l wLn—l\‘Z e a‘)(,n—l\‘(n—ll a,

y=DFT,(a) : HFBN L, STHARHREE (BMEHR)

o IR AR e L SR LA AR R I SR AR -



2l
=g

1 1 1 1
Yo 1 o ot ) %
A e a,
¥, T o o o™ || g

e |1t oo
w |1 e o i a.
7, 1o & ot || a
¥; 1 of ..ol |4
¥y 1o & .. o \&

1 o 10 o 0 1 o y

1 o 01 0 o 1 o a

1 o 10 o 0 1 o a

_ 1 & 01 0 e 1 a’l|a

- 1 o ] 10 o 0ff1 o a,

1 o 01 0 o 1 o a

1 & 10 & 0 1 't ag

1o 01 0 of 1 o) |4

Ex_GCD ¥ JERRJL B8 5 ik
o BE 2 MREANTMEE a, b, £ gcd(a, b) FREEE a fl b RALLIE
o x|y TR x EILAERRy , BDy 2 x AOfEEL

o TRENIREEIEATHREREE gcd(a, b), ERALATES x, M y,, #18
ax, + by, = gcd(a, b)

o KEEHE
+ Ei6—: 1% a, b RALATROREE], XHESEE 1, y, WE ax+by BEE
gcd(a,b) EB%, BP gcd(a, b) | ax + by
(BB, 0 <gcd(a, b) <ax+by; BB, k*gcd(a b) = ax + by, He1 < k)

o RIS FEEHI x y, 5 gcd(a b) = ax + by
(BP, gcd(a, b) < ax + by F9%ESa[EE, BP gcd 2 a f1 b MIR/NIELMAS)

Chapter 32 String Matching
o HIR & JE4:

e @ C x:string o is a prefix of x, if x = wy for some y € £*.

X X
EEEEN EEEE
@

y
prefix (o 2 x FIBIE) suffix

e @ 3x:wisasuflix ofx, if x = yw for some y € £*.
e Ifwcxorwax,then|o| <|x|
+ The empty string ¢ is both a suffix and a prefix of every string.
e For example, we have ab = abcca and cca =1 abeca.
+ For any strings x and y and any character a, we have x 3y if and only if xa = ya.

o C and 3 are transitive relations,

o FRHBILEHEZLLE:
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B (KFEE) | BT

nEnE

Naive

B o Jc o c 1o o 1o Jc 1o |

(R RHaLE) I

p(ITs+1 . stm))
LT T eate)
FaERa

5p H5x",
p(P) WEAE

Naive vs RK vs FA vs KMP

d ﬂﬂﬂﬂ
o3 0] @ ® @
'FA
b a c 5P HE
e = ﬂ [ n wﬁﬂl&
R 6.0) =3, EPRAEIA %ﬁﬁw MR-, WHPRIEE P, P
o4, a)=3, A4AT Nt 7S b, HMr P[3]) BES TR TF—NTES?
Sl ki " j%:ufvl\;fmaaﬁ Eag%ﬁ
P 0,5) | MNFRRIEN, WEE Vo AT,
Algorithm Preprocessing time Matching time
Naive 0 O((n—m+ 1)m)
Rabin-Karp ®(m) O((n—m+ 1)m)
Finite automaton O(m|X|) O(n)
Knuth-Morris-Pratt B (m) ®(n)
G (RS | R A I stmly b
ENCRENCENCNENCNEY
ES: HHE [ ]
QNS Il ISR, pman ¢ G o >
FA | RdP. 0.5 | 84110 RE—R Naive vs RK vs FA vs KMP
(0] @ @ @
BNFRIIRICES, Yok P, — m
KMP | 3K 7(P) éﬁ‘?lr?ﬁﬁﬁ@@ﬂg}ﬂ = ‘. < BOEE -
| g {41-2, .t@l?’EEFHU! =

o HIRBZN (FFAMI) &1EH:

| sk, iaw ) RS T HF— IR
), APRRERN, REg

[31/) The design and analysis of computer algorithms

AV Aho, JE Hopcroft - 1974 - Pearson Education India

Yo {717 99 SIF WSIEREL: 15831 MEANE A 9MER 99

e Many string-matching algorithms build a finite automaton (Machine) that scans
the text 7" for all occurrences of the pattern P.

e These string-matching automata are very efficient:

+ they examine each text character exactly

+ taking constant time per text character.

once ;

|

text T M ot‘:li‘lu'l
input T; built from —1 Mmaiching
! the pattern P case

e KMP: {E#: Knuth - Morris - Pratt

KMP is a linear-time string-matching algorithm due to Knuth, Morris,

and Pratt.

The accounting method
Running time? chapter17

KMP-MATCHER(T. P)

Amortized analysis (accounting)

COMPUTE-PREFIX-FUNCTION (P)

1 n = T.length @(}’l) 1 m = P.length @(l’l’l)
2 m = P.length 2 let z[l..m] be anew array

3 7 = COMPUTE-PREFIX-FUNCTION(P) 3 x[l]=0

4.4=0 4 k=0

5 fori =1ton 5 forqg =2tom

6 while ¢ > 0 and Plg + 1] # T[i] 6 while k > 0and P[k + 1] # P[q]
7 q = nlq] 7 k = nlk

8 if Plg+ 1] == T[i] 3 an[A+l]== 4]

9 g=q+1 9 =k

10 ifg==m 10 7lg] =k

11 print “Pattern occurs with shift” i —m 11 return 7

12 ¢ = 7lq]

prefix function

algl=max{k: k<gand P,3 P, }

KMP algorithm avoids computing

r [a[c[EEE] .
[ ]

[alb]alp a c a alsl=3

babaca aB=1

clababaca all]=0

P

zm

the transition function J, and

its matching time is ®(n) using just an auxiliary function z,
which we precompute from the pattern in time ®@(m) and store

m].

in an array z[1 ..
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Chapter 17 “F#E4 Hr
o PRS-

0 Inan amortized analysis, we average the time required to perform a
sequence of data-structure operations over all the operations performed.

AESNMEER, K—MEERTFSRIE

a With amortized analysis, we can show that the average cost of an
operation is small, if we average over a sequence of operations, even
though a single operation within the sequence might be expensive.

a Amortized analysis differs from average-case analysis in that probability
1s not involved; an amortized analysis guarantees the average
performance of each operation in the worst case.

a Amortized cost, DHEEZE: E—MRFLATFIHEZE (cost)

o BFTk:

o RAEIrHr (aggregate analysis) —— 114
e itlki% (the accounting method) —— ™43, KMP
o HEeIk

o RENT:

e In aggregate analysis, we show that for all », a
sequence of n operations takes worst-case time 7{(n)
in total.

e In the worst case, the average cost, or amortized cost,
per operation is therefore 7(n)/n.

o InMKkk:
+ Amortized cost : the amount we charge an operation.

+ Credit : when an operation’s amortized cost exceeds its actual cost, we assign the
difference to specific objects in the data structure as credit.
DERHES KT, ZRFET, (EHER. BRA (RLoESEINTSEEETER)
+ Credit can help pay for later operations whose amortized cost is less than their
actual cost.
* We denote the actual cost of the ith operation by ¢, and the amortized cost of the ith
operation by ¢;, we require

L
Yazie
i=1 i=1

For all sequences of n operations.
o The total credit
YiaG-Ya

o BEBYE:

o The potential method of amortized analysis represents the prepaid work as “potential energy”™
(potential), which can be released to pay for future operations
o We associate the potential with the data structure (DS) as a whole rather than with specific objects
within the data structure.
o The potential method works as follows:
+ We will perform » operations, starting with an initial DS D).
+ ¢;: the actual cost of the ith operation (i=1,2, ... , n).
+ D, the DS that results after applying the ith operation to DS D,
+ @ Apotential function & maps D; to a real number O(D,) , which is the potential associated with D,
o The amortized cost ¢; of the ith operation with respect to potential function @ is defined by
¢ =c¢; + P(D;) — d(D;_y)
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The total amortized cost

of the n operations is

The amortized cost C; of the ith operation with respect to potential function @ is defined by

G = ¢+ ®(D;) — P(D; )

N = Y (e + o) - e(D;)
=1 i=1
= Y i+ ®D,) —D(Dy)

i=1

Different potential functions may yield different amortized costs.

Chapter 34 NP Complete Problems

e NP Complete Problems:

We usually just define @(D,) to be 0 and then show that ®(D,) > 0 for all 7 .

FHEFMFME (2000-5-24, EENRSClay MFAAN, EERE=AFRERE—TEBE—THET)

HE I

~

. T Birch) FIHFAEMIE - 8i/R(Swinnerton-Dyer)$518 —
. E&(Hodge) B8

. ERHEN - BRFETHR(Navier-Stokes) /5T

. P(ZIMFEIEFTRR)EREXINP (AR EEEIRE )
. FENNZE(Poincare)i5HE

A

t.

o

This question tumed out to be extraordinarily difficult. Nearly a century passed
between its formulation in 1904 by Henri Poincaré and its solution by Grigory
Perelman, announced in preprints posted on ArXivorg in 2002 and 2003.

HIEDH P& ArXiv.org HEFE TUERR AR,

Havhee-Stokez Equation

(L

fEEah s, “INREANERRER, EHEFMNEUETEN. - 2006580, b

EETEENRFRBNREZHN TEREE" | RR RS IEEREZHERN FET [

EET, iRl “EERTESSE. BHAEmsmE? - Riomann Hypotiis
RS (Riemann)Rig e e L e e

Mathersaties Insttuta of Cambriage. Ma

1% - H/RER( Yang-Mills S EMFIREE O

i) AR SR A .

o P .

P is the class of decision problems that can be solved in

polynomial time (O(#"), where k is a constant). Intuitively, the

problems in P class are easy problems.
P IEJRE: ZTAZUATEIA R ARAYFIEIRIRE
-

o EHAAT, EEFHERNER
+ EEGH, T uEy BETFRANT L—REE

o NP :

NP is the class of decision problems for which we can verify

the correctness of solutions in polynomial time.

NP (G722 AR AT RIERY#)ERIRR

+ This doesn’t say it is easy to find a solution.

+ In fact, it is often hard to find a solution!

e NPCHE: GITAEMEINPCIHE, MAHE 2 miH

)

BT A BINPC i) & 45 7] LU 4k yBoolean Satisfiability

(CNF&EHGERD  (SATHi 2t E D) (55253 %)

MR REEZRD

(el
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o Intitively, NP-Complete is the class of the “most difficult” problems in NP

All NP-Complete problems appear to be difficult.
No polynomial-time algorithm has been found for any NP-Complete problem. (RHHE NPC, BigEHRIISHAEE) For

example,

« Hamilitonian cycle problem

« Boolean Satisfiability (5/Rel#EEIEEE)
NPC [E)RE: H15R NP E)REROFRS TRl Seab e LIt S U REIPOiT IERR S TROMEH, RO NeC R (ResutImER) .
—EFIEHAEE C NP RS (NPC) #, WUR:
1 BENERER NP R,

2. FER b NpC @] LB C Eil.

NP-Complete

NP

@ NP-hord: FIFHEREIE A, FABE, Bty Ne g spaTLl
HHEIE,  (NP-Had B NPC SREOTERI) NPCHD

NP-hard SIS BT : W —NEME AR5 NP-hard
[, TR A BEWT NP,

o FTERY NPC EBa] LITESSH2/0 Boolean Satisfiability
e Cook F1971iEBAT Sat & NPC, ITEATIAY NPC BE&#8id30007?
o JISR{E— NPC [ARES (R, WFTE NPC E RS MUATRE!

NP
D (e
o RSAAHAME RS - NPHMNH & HEFWES:

e The concept of a public-key cryptosystem is due to Diffie
and Hellman, 1976

e The RSA cryptosystem (1977, MIT) was proposed by
Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman,
(Turing Award, 2002)

WikTe

" Thomas H. Cormen Charles E. Leiserson
(m
B Ronald L. Rivest Clifford Stein

Rivest Shamir  Adleman

Adi Shamir (2002, EIR¥; 2024, FIREL) ,
2009FEALAIAY, IREHE "BRMEZLRRZTHRRN" |
R B AR MBI
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