U RER V%S EIN =

Strassen &%

—. Strassengi%
PAEREL O(N?) EterIEEIR?

1969, Volker Strassenfti T —MEARAEREET O(N?) sapeiEek, BEERE
F0(nfo%) = O(n?87), WFERIA, StrassenfikREIERIFHRMLLBALES
(N >300) , tae LAHBRAMLS, TR REFEITHE.

Chapter 0 Preface
o BhH:

HEHER
SIER 3
LZEIaT
e
EW
F A

o EYE IR 19THERIRE GHENEFRITER) EF AL

R
(Edsger Wybe Dijkstra 5 KnuthF#FR3EATX NS H A K&
HLRHE O
Dot .. FEUhE SIS (1938-) |, 197TAEREEIRE, B

EAREH, PNESEHN, EIEEFRSTES
ESRARNSRE, £2HEE (ITETERZTZAR)
(The Art of Computer Programming) BI{EZ, i+EH1
HEAR RS TEXAIMETAFONTR & BEZE, fBERIXLLRY;
FAIA R NSRRI EMESHEEK. #
A "ATEREZR .

¢ Nicklaus Wirth 19848 & ¥ Pascalz % &% + HIELEH = 18
5

* BB AT LABRA MEEIRTFHE X XL AR R,

BERRHNZO, thEEERIRE (A BRSNS,
BES (0, 1) BERRFRREIEEE, BH—PHITXRAEE., #
B BRNEEE, XASMERE, S&Ek, BHRREEEE (5
EHNREZE])

B ABEA—EIETHEE/ T EIRE: Nicklaus Wirth (1984

o HRfH- XF\Y/ by o =58 £, ERY) —Pascalzi, X AT E AN
BRp: . &Mﬁlﬂl#, RERET, X%EEL)%‘;&W@;EFglé;;EEQ "E:-Atnxcjj%&g%agmu&naa
8% + RS = 2= FERSE LW, B, W)
- KFRTENRHRAREIFTE. .
- BIEARAEE, BRI, hEREFN! uvr‘“”

(Ei£Bi8) (Introduction to Algorithms) ZEFFETE T 5B HARM HIRRIX FIH BN SRS SEENES, (FEERD
Hr-Rl/RE (Thomas H. Cormen) | B/RET-BE/R7E (Charles E. Leiserson) . D& Z4H15 (Ronald L. Rivest) . 5aFliE
B (Clifford Stein) , B—KRFITT1990%, 2000 @HHRAE=HR, 1=

Chapter 1 The role of algorithms in computing

af://n0
af://n15
af://n17
af://n32

e What are algorithms:

e Computing: information processing

e Scientific computing (modeling, computing, verifying)
o BEF: AR RN = EE
“ETRE" o WAEMEA, B AMIERTSFENES =
(flan: PR/ NEREEREFEI000NELSLRT? ##, #i hakiErs, #FEE, HEH.) of
+ 1900, Hilbert (1862~1943), BREFHF R KRz, “BREFE—MERAMIRE (BXH , ﬂ
B EEERERTER? ”
« Alan Turing (1912~1954), 1931, undergraduate in Cambridge Univ. -
+ Before 1936, no scientific computing. Turing, A1 115 % & H 7 ¥ E @) B R AR, 1936.
+ John Von Neumann (1903~1957), 1946, first electronic computer.
o« B g IR
= CABIE” o AEANARES; BRSEFRCME.

ﬁi‘ﬁ% F—, BEGIESTRERESER, B, R NLEFSIE, BTRR
Exﬂﬂﬁﬁﬁiﬁﬁ@%ﬁ&%ﬂﬁﬁ%ﬂ. BRI S B K SR H AR 2R

ERISHPRS SRS, MENEESHIOITER. BROESRAR TP E, nEeRER ’
#ﬁ#ﬂﬁ BARRERT

e characteristics of algorithm:

The characteristics of the algorithm
« Output: atleast one.
+ Correct: An algorithm is said to be correct
if, for every input instance, it halts with the correct output. (8§EHN, BLRIEH)
+ Feasible (FJi7i%, AI4RTESCM)
+ Practical (feasible actually, SCfRRI{T)

« Incorrect algorithm
» might not halt at all on some input instances, or (F&EEH1)
» might halt with an answer other than the desired one (FHUBLERAIER)
» can sometimes be useful (if error rate can be controlled)

Chapter 2 Framework for analyzing algorithms

o JLFHEEH TR

TSRO EEE: RUSBITEE, NEE, ERY, RAM

Computing model (i+E#&E5Y)

« RAM, Random-access machine BEHI#ZENEE (Von-neumann, ;3 iE{RkSER) :
EAEHIAENAE, TERMEMAE TS Ht k. ChREREERIT SR,
B FEFAURTF AN BIERR T B RN,

. BERU (GRANFARR, MRITTENE) | RS8R, MENREES
TSR, [BISSTAFSCREEMA, R ARSIt EE:.FI_
FREAR, [EEIRTIETEER D REEA RS MMES IR

- NEH (BF, HEEBEENL) - TLEFRARWBREFRIHES. EElE
—HRIRN (FEER) N—REHENT, NEEZERET, HT—MTit
B RSP TR TIRIE.

. gtﬁiﬁﬂﬂ%%ﬂ (BFE/R, BERN L) @ —HMBeEimBR®EEs, TLRERNT

o

Chapter 3 Growth of functions

o LU A A% R B R R T s

o0x< ;,0=< ;0==, Q=2 ;, o= >
TPl P
For a given function g(#), we denote by @(g(n)) the set of functions

©(g(n)) = { f(n): there exist positive constants ¢y, ¢, , and n, such that
0=<cgn) =fln)<c,gn) foralln>n,}.

g b5

O —notation: For a given function g(r), we denote by O(g(r)) the set of functions
O(g(n)) = {f(n): there exist positive constants ¢ and n, such that 0<fin) <c g(n) forall n > n}.

LT

af://n40
af://n45

() — notation: For a given function g(n), we denote by Q(g(n)) the set of functions
Q(g(n)) = { fln): there exist positive constants ¢ and n, such that 0 < ¢ g(n) <f(n) forall n>n}.

AT R L5

o(g(n)) = {f{n): for any positive constants ¢ > 0, there exits a
constant n,> 0 such that 0 <f{(n) < ¢ g(n) for all n > n,}.

AL R T 5

e The w-notation denotes an lower bound that is not asymptotically tight. Formally,
define w(g(n)) as the set

w(g(n)) = { fin): for any positive constants ¢ > 0, there exits a constant
ny> 0 such that 0 < ¢ g(n) <A(n) for all n > n}.

o fRiEME & BRM & MM & RN FRM::

S (n) = ©(g(n)) and g(n) = O(h(n)) imply f(n) = (h(n)),
S (n) = 0(g(n)) and g(n) = O(h(n)) imply f (n) = O(h(n)),
S (n)=X(g(n)) and g(n) = Q(h(n)) imply f(n) = Q(h(n)),
S (n) =o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)),

S (n) = o(g(n)) and g(n) = o(h(n)) imply 1 (1) = o(h(n)).

o Reflexivity (B&EM)

J(m)=06(f(n)),
J(m)=0(f(n)),
J(m)=Q(f(n)).

e Symmetry (XFFRTE)
J(n)=0(g(n)) if and only if g(n) = O(f(n)).

e Transpose symmetry (2 %FR14)

J(n)=0(g(n)) it and only if g(n) = Q(f(n)),
J(n)=o0(g(n)) ifand only if g(n) = (1 (n)).

Chapter 4 Recurrences
o UHELI A 5 A% BE B T

How to obtain asymptotic “®” or “O” bounds on the recurrencesolution?

e Substitution method (& ;%) : guesses a bound and then use mathematical
induction to prove our guess correct.

e lteration method (GE{XJ%) : converts the recurrence into a summation and then
relies on techniques for bounding summations to solve the recurrence.

e Recursion-tree method (a kind of iteration method)

e Master method (EFE, FEHE, TREUE) : provides bounds for
recurrences of the form 7(n) = al(n/b)+fin), wherea>1,b>1,and fin)isa
given function.

L4 Elfjj‘?f & ﬂ@ﬁ&

af://n64

T(n)=aT(n/b)+ f(n),
@(nlagh u), f(n)= O(n(lognu)—.t:)
T(n)= @(n'“gh”lgn),f(n)= @(nhgh")
O(f(m). f(m)=0n"****) and af (n/b) < cf (n) for large n

de>0
o<l

o T(n)=9T(n3)+n
a=9.b=3 f(n)=n = n**"=n"*"=n*=0(n")
= f(n)=0(n"®""),whereg=1 = T(n)=0(n")
e T(n)=T1(12n73) +1
a=1b=3/2f(m=1 = n=c=p=' =y =]
> f)=0m*) = T(n)=6lgn)

o T(n) =3T(nA4) + nlgn
a=3b=4 f(n)=nlgn = n"%"=n"%=0(n""™)
= f(n)=Qn"e**), where & = 0.2, and for sufficiently large n,
af (n/ b)=3(n/4)lg(n/ 4)< 3/ Hnlgn=cf (n) for c=3/4
= T(n)=0(nlgn)

Chapter 5 rand

Chapter 6 Heapsort

Chapter 7 Quicksort

QUICKSORT (A, p.r) PARTITION (A, p,r)
1 ifp<r 1 x = Afr]
2 ¢ = PARTITION(A, p.r) 2 i=p-1
3 QUICKSORT (A, p.qg — 1) : for fifj[;’]tg" =1
RN i . Alj] =x
4 QUICKSORT(A.q + 1.r) s i
6 exchange A[i] with A[f]

exchange A[i + 1] with A[r]
8 returni + |

i

2

QUICKSORT(A, p.r) PARTITION(A, p,r) @ n '4
1 ifp<r Ixo=Alr] iy |
2 = PARTITION(A. p.r) 2 i=p-1 = :
4 P i ® afsT (3]s 6+
3 QUICKSORT(A. p,q — 1) 1 for ’_rj[(’]t‘:" -1 S SERRE
4 K CORT i 4 mwAy|=x i J r
i QUICKSORT(4,¢ + 1,7) 5 =i+l (© 7\1\1\5\«'4
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r] Liad / d
8 returni + | @ (Y IEE B
p i J)
SRS arION B, 28 (&) meges | @ CLIEEEEL]E
STFHE (FWc) A, i+ REZEMTEAT A, r : J d
B p -1 BUTENFETF A, HERE A - apty @ CIEI K
AP, P i
Alp ~i] L < A[r] WS, STRA+11541r), LMRIEAL] ZHIRITTEREBLLE N, (@ OEE g
A~], > A | ZETERER. r I
(hy HEE 2R R
swap(A[i+1], A[r]), when termination 0 <7 <r-1
p i r
® WEGE

o At A RHR:

af://n73
af://n74
af://n75

RANDOMIZED-QUICKSORT (A, p. r) lntumvely...

1 ifp<r *
2 ¢ = RANDOMIZED-PARTITION(A, p.r)
3 RANDOMIZED-QUICKSORT(A. p.g — 1)

EEETTEE - EEETTermee

4 RANDOMIZED-QUICKSORT (A, 4 + 1.r)

RANDOMIZED-PARTITION (4, p,r N —
i NG 8 1RHK, BAIT | NTTR

1 i = RANDOM(p.r)

2 exchange A[r] with A[f]

3 return PARTITION(A. p. 1)]

F2RHK, NEIF2NTE (BEM 2-14)
PARTITION(A, p, r)

1 x = Al I*I*Htltl*l*n*-

2 i=p—1

3 forj=ptor—1 FEIRDK, NEMTFI M TTE (E';fE{ﬁ 2-14%)
4 [ifApT=x)
5 =TT B LRHE, BT 2 AR GURAL 1)
6 exchange A[i] with A[j]
7 exchange A[i + 1] with A[r] 2l =n => k=lo(ntl
: 2%1=n= = lgf)

8 e =

return i + | BRSREESE n-1 KR = O(nlgn)

Chapter 8 Sorting in Linear Time

SNERR" | \\H

mm—m |C :
(ERBL AT
M7, B4 B)
EHNET)

o JFGITE:

The ith order statistic of a set of n elements is the ith smallest element.
v the minimum of a set of elements is the first order statistic (i = 1).
v the maximum is the nth order statistic (i = n).

v A median, informally, is the “halfway point” of the set.

[6.12/5/9 10 8 7

Minimum: 2 (1 IFESTER)
Maximum: 12 (nfIRFEFITE)

o B [H Rk

af://n84

e The general selection problem appears more difficult than the simple
problem of finding a minimum.

e Yet, surprisingly, the asymptotic running time for both problems is the same:
O(n).

T B m *

RANDOMIZED-SELECT(4, p, r; iy

1 ifp=r

3 q=RANDOMIZED-PARTITION(4, p, r) \\
4 k=q-ptl '\m\\ 1 BEHISEE, $KE) A FRAIE k INITEER Alq)

S ifi ==k //the pivot value is the am:

6 return A[q] — J// FEBR k-1 ANTTERLE Alg) AN, 5Bk KBITTERE Al
7 elseif i <k

8

9

return RANDOMIZED-SELECT(4, p, g-1, i)
else return RANDOMIZED-SELECT(4, g+1, 1, i-k)

T(n) = T(max(k-1, n-k)) + O(n)

e Worst-case running time

T(n) = T(n-1) + O(n),
O(n?)

e A special case
q = (r-p)/2, then
T(n) = T(n/2) + O(n),
O(n)

e Expected running time ?

Indicator random variables, ®(n) 7 *

LiEE— MR

MEAC ISR TRIEAEE. XMNERTURRENN, BIURE— TR, BE— N TRshEanE
TTE.

289K

RIEEETRBHAETHY, FEMENTEENTRBUTEENEN, MEATHETEENTRET
FERANAN, XMIRS tRizHF Q RD KSBIER.

3.3

RIBOXER, BERETRIME.

MREETEOMBIETFR (EARARSIEEMOFFR) , NEETEREHNIIE.
MREETRAMVENTK-1, NBNIBTFEETRNANTFHEAT, HEEANFHATBRAERK.

MREETRAMVEATK-1, NBNIBRTFEETRNEMNTFHAS, MEECNFHRAPBRASK, 7
BrEZREEMNFHRANANI (BALMNFEEPHRTRS R TEEREVNIZ) .

Chapter 9 sort order
S

Chapter 15 dp
o BNTFLEM: NEMUEERHZ—

af://n97
af://n99

SO\
Optimal substructure (Ex{fiFL5H) : @e

+ An optimal solution to a problem (assembly-line scheduling, finding the fastest
way through station S; ;) contains within it an optimal solution to subproblems
(finding the fastest way through either S, ., or S, ;).

EIEE R R AFE R H TR &M, p,contains p,within it.
+ Optimal substructure is one of the hallmarks of the applicability of dynamic

programming.

mETFERRHNSRANENEERRZ—.

o n RKIBSTH mi 4L

e The # of BST with n nodes is Q(4"/n’/?)
(Problem 12-4)

Chapter 16 Greedy Algorithm
e RINTFEM:

No general way to tell if a greedy algorithm is optimal, but two key ingredients.
BERUERANERRATOCEEZRTRM, BARNMELES

1. greedy-choice property Z/LEEE M (Soluton o 5,)

= (solution to §;;) U{a,} U (solution to S,)

2. optimal substructure ~ FRLTLEH

% =
. L S;
FRIBHRME + FIEFE 4 [RRIRNEMLRE
o HLHMdpH X -
Dynamic programming
o RETEMTEE B LR ©O00®
(SERRFITED) C }"@ o B
o KEREER: bottom-up ® & & E)
DP for Activity DP for OBST
Greedy

o BEiEEE BEIMFEERTKE
o REBEIR: top-down

#E = R RN T ——
GA for Activity =+ -

iﬂﬁ%fﬂ&ﬁa@%{mﬁuﬁi% }4. "
o NHHEBMOIE KX
PHEBRRE R DERERYE

o O-1EBERR TROEEREME

o KEDEHERRR, TRMBRBRLNNE v, v,
BERFFHERE (v, w,> v, /w,,, for all i)
o Time: HifF O(nlgn), EINER O(n)

e Huffman#i#g:

af://n107

An important application: the design of data compression.

Huffman codes, F§XSIRHG

19514, IGREEMITiEEL, SIfRobert M. Fanof{H—1E
HHRENEE "SHEEMNTHERED" . BXERNTETE
PR RMRBNIEE, FHERTRINERRENN. B8
FERERRLNGAERXN, B% TREEZShannon-Fano
ISR —E TRA TR, 19528, BRE8ART (—ia
BIRNSRRBINEE) . BARRZAHUffmanizia,

A method for the construction of minimum-redundancy codes

DA Huffman - Proceedings of the IRE, 1952 - ieeexplore.ieee.org

... In order to avoidthe use of the lengthy term "minimumredundancy,” this term will be

replaced here by "optimum.” Itwill be understood then that, in this paper, "optimum code’means .
Yo (77 99518 WIIMARE: 10212 BXCE A 9 MNES

Chapter 22 & %3 Al
o ARBEF & AVEESEEZIAE AL

e Memory
+ adjacency-list (AL) O(V+E)
« adjacency-matrix (AM) : ©(172)

4 EXE (David Albert Huffman,
1925-1999), 1999510517 HEEAEE
t, ZE74%, BEFAERIBIER,
MHEHRE, BESFERAEHNEL
AR KIT A ARTEIC.
EXRSEMIT—ETIFRN67F, Ziaf
ENIMMAF Santa Cruzgpke, Rizikit
SR ZFRMEMAA, 1970—1973F(F
REE, 1994FEXSIEI,
BRTEXSHL, EXSEREMSED
FECeNE, thanfbiait e — WS
ZEEBEIAS RRX EERREE
i, AfRGZAELEE L.

o AL: WAKBENE, &=8; BESW, HEFEHEIEE mwee. wame. oba 754)

o AM: PEREEER

o BIZEMRSCH, KT RANEIESS, (KR RENEFSHES.
o WNSEAHSTL (Standard Template Library) , ECHGESS, HRMEMEESISE

FEERERAG (EFHEdREEnENERS) .
e BFS/DFSH} AR 5 F & BE ST

Aggregate analysis: O(V+E) !
RESH: S TRNNHAE—R, .
BRIMGN—IR 4
5

[517 6

Zo L ;
¢ OaEiEn i
10

S em WSV e 4

iy 13

14

15

16

Aggregate analysis, REEDHT: RAEER, ASEABIFTFHR
B ERT HTRIEER (ARETAIFRE, A [WE
Nim, HAMERWESRDER—X. Tl Vv, Fraihsie.

O(V+E)

BFS(G, 5)

for each vertex u € G.V — {s}
u.color = WHITE
u.d = oo
. = NIL
s.color = GRAY
s.d=0
s.m = NIL
Q=40
ENQUEUE(Q, s)
while Q # @
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.color == WHITE
v.color = GRAY
vd=ud+1
v =u
ENQUEUE(Q. v)
u.color = BLACK

DFS(G)
1 for each vertex u € G.V

2 u.color = WHITE

3 M.t = NIL

4 time = 0

5 foreach vertex u € G.V

6 if u.color == WHITE
7 DFS-VIsSIT(G. 1)

DFS-VISIT(G. u)

time = time + 1

1

2 u.d = time

3 u.color = GRAY

4 for each v € G.Adj[u]

5 if v.color == WHITE

6 v = U

7 DFS-VISIT(G. v)
8 u.color = BLACK
9 dime = time + 1

0 wu.f = time

af://n121

o FENAEFRFERdagRIERBHZ TR,
o —LNA: RIEEE (GHRINEF, AERRENE—RAHTIN
SRME, BEXNE) [, HOAE ..

11716 (@ndershorts) (Sosks) 1718

e P
(watch) o110
12/15 (pants » (shoes) 13714
(shird) 113
o7 (el
(tie) =

You Song, etc., A Microservice-based Multi-cluster Computation
Platform For Space Mission Design, 8th International Systems &
Coneurrent Engineering for Space Applications Conference,
Glasgow, UK, 2018

Chapter 23 5 /M B
¢ Kruskal & Prim:

Kruskal: RE&xFL, 6 T# BB RG0S
Prim: 4% # % B RG34

Application: Electronic circuit designs (sFezigit)

Algorithms: Kruskal , Prim (& &smaeamm)
o Kruskal (BHi-5/R) BEEBERIORT, DEUREESIEES, WHREGRAMNMKSE
o Prim (BB BENTHSE, DNEHEESnBERaE—L

Chapter 24 H.J5 £ 45 %
o BB E: BFS

BFSE]FHTK#E—1NTo
NERNSREER

o BT EE MRk

o Optimal substructure: Shortest-paths algorithms typically rely on the property that a shortest path
between two vertices contains other shortest paths within it.

BRI EE RN IR

o Lemma 24.1 (Subpaths of shortest paths are shortest paths)
Given a weighted, directed graph G = (V. E) with weight functionw : E—R ,letp=<v,, v, ... ,v,>
be a shortest path from vertex v, to vertex v, and, for any 7 and j such that 0 </ <j <k let p,; = <v;, vy,
., v;> be the subpath of p from vertex v, to vertex v, . Then, p, is a shortest path from v, to v,

Proof ... 2 Ps
Vo~ N V; Vj\/\‘v,c

’

P2

Poi Pij Pjk
Vo A W ~e Y e 1k

P = Pypyp; is shortest, = P, 1s shortest,
thatis, p = 8(v,, v) that is, p, = 8(v;, v))

o MAHLERAE:

af://n133
af://n140

Relaxation (actually Tight): RS4RI (v, v) FUTHASHIRME, BEL INITIALIZE-SINGLE-SOURCE(G, 5)
B s B v RUBEES vd R (RIE) . 1 for each vertex v € G.V

v.d = oo

BT RS E BRI s

IHB u—v TS, vd A
97, BD dis(s, v) BN,
RELAX (v, v, w)

5 2
S 2 Yy—"sy I ifvid > u.d+wu)
2 v.d = u.d+w.v)
= 9: vd 3 v =u
“e*ﬂ“‘(\o

ARSI B IR 12, FRA stk 9F2, SIELEHSERIE, EE
REMDE "FISRD" |, LFRERCA "RISEXRE . AENS/ M EEESER
INITIALIZE-SINGLE-SOURCE, #ZEREME—&EibiiTrelaxiZ(E.

o B R B AR ARRA Bt B R R
BRI

o Triangle inequality, =FAZ, (Lemma 24.10)
For any edge (1, v) €E, we have d(s, v) < d(s, u) + w(u, v)

« Upper-bound property, @M (Lemma 24.11)
We always have v. d > d(s, v) for all vertices v € 7, and once v. d achieves
the value d(s, v), it never changes

+ Convergence property , WZSUEME (Lemma 24.14) Relaxation
3 , i ¢ . , ifud=o , 5 2
Ifs~u—visa sbortesl path in G for somei(u‘ V)ETV, aimd if z{.d— d(s, u) at any Sy v
time prior to relaxing edge (u, v), then v.d = d(s, v) at all times afterward \/_/

B8 s~ u — v B—HRRIEER, WESD(w, v) BHTHASDE], 9: vd
ud IREIRIGEER, B wd=3&(s, u), NURSA(u, v) BITIAESS
vd IXEIRIERE (AIRIERREEKH) |, Blvd=4ds, v)

e Bellman-Ford®%: BFHE
oV B AR ER B
WS RE: O(VE)

BF algorithm solves the single-source shortest-paths problem in the general case in which edge weights may be negative, cycle may exists.
BFEX, BANEE (RFESONAE) @ MIRRETERD, #33
BNRR, SFTERGLEHI TR,

BELLMAN-FORD(G, w, 5)

| INITIALIZE-SINGLE-SOURCE(G. 5) INITIALIZE-SINGLE-SOURCE(G . 5) RELAX (i, v, w)

2 fori=1t(G.V|—1 s/ 1 forcachvertex v € G.V 1 ifv.d > ud+wv)

3 for each edge (u.v) € i i’i - Or_c” 3 L“i . ’:}"/)
4 RELAX (1, v, w) //H3 4 sd=0 ’ . =

5 for each edge (u,v) € G.E

6 ifv.d>u.d+wv)

7 return FALSE R .

8 return TRUE Running Time?

Relaxation

5 2
S U ——= 7V

9 vd

BFEZ, BRIEE (RFERROIEAE) « WRRETED, SNSIRR, MBIt TAEE.

Running Time: WEANTRR (3 V-1 MRS, %2 709ER) , AR TR
SIRIE (L EKW, $B31TR0ER) | Bk, HUTEdEN O(VF) .

BELLMAN-FORD(G. w,) INITIALIZE-SINGLE-SOURCE(G . 5) RELAX(u, v, w)
1 INITIALIZE-SINGLE-SOURCE(G. 5) I foreach vertex v € G.V 1 ifvd > w.d+wv)

2 fori = 110|G.V|~1 //@mis 2 v.d = oo 2 vod = u.d+ w.v)
3 for cach edge (u,v) € G.E 3 v.r = NIL 3 v =u

4 RELAX (e, v, w) //H:3tih 4 5d=0

5 for each edge (v.v) € G.E :

6 ifvod > u.d + w(u.v)
7
8

return FALSE | oL EE)’¢
= @ 4 N g Relaxation
return TRUE] 2 X

f 5 2
WNEERIAE (ALURER |) =)) S u
(. WHRERH 1, HETER
IR, DZELMEE) |
B AR RITRAR.

9 nd

o F T Topofl & TSHIE
HREEEN XA M T B (7] BUA SO
a2 OV + E)

By relaxing the edges of a weighted dag (directed acyclic graph) G = (V, E), (supports negative edges, but acyclic),
according to a topological sort of its vertices.

EEBRCARE (TLBERA) XEEFIER, STt ThiEF, &
[ER S TR .
, o ! i DAG-SHORTEST-PATHS (G w. 5)
1 topologically sort the vertices of G
2 INITIALIZE-SINGLE-SOURCE(G, s)
3 for each vertex u. taken in topologically sorted order

4 for each vertex v € G. Adj[u]
5 RELAX (1, v.w)

INITIALIZE- SINGLE-SOURCE(G, 5)
1 for each vertex v € G.V
2 v.d =00

3 V.t = NIL
4 s.d=0 Relaxation
RELAX (1, v, w) 5 2
: S—""u
1 ifv.d>ud+wuv)
' 2 vid = u.d+ w(u.v) 9 nd
© 3 VT =u

e Dijkstra¥ it & gotoF Eit:
HEgE 0 T8 38 A) 1B
KI5 O S
WEEE: O(V + ElgV)

The running time of DJ depends on how we implement the min-priority queue. It
may be

0(2), OV + ElgV) , or O(VgV + E)

o Dijkstra 8% BERBEIEREAIERE
(EZRINZAFRE) HIREHSEERE. ;

o 241 BF/TERIRRRENE " A "R AORSEERIRER

[t Bl
Anote on two problems in connexion with graphs Edsger Wybe Dijkstra
EW Dikstra 1930/5/11-2002/8/6
Edsger Wybe Dilkstra: his life, work, and legacy, 2022 - dl.acm.org 1972FEREIHEE
We start the construction by choosing an arbitrary node as the only member of setA, and @ RE “gotoFEL”
by placing all branches that end in this node in set Il. To start with, set | is empty. From @ REESENPVERE
then onwards we perform the following two steps repeatedly. Step 1. The shortest branch @ W*;7 ﬁiﬁ? [E%E
of set Il is removed from this set and added to set I. As a result one node is transferred g ﬁ%ﬁ?&%ﬁ%ﬁ
from set B to setA. ® THERERGRQTHEMTES
B ACM Digital Library SKnuthHiFARINZMEHE
BERRITENEZROA

T iR 00 3IA WEIAR: GEI2D) IR i 99 MES
o B4 WENNT
summary Ak L

. BEROBEEENERREA e — -
. Eﬁz:%it s Triangle inequality topo sort v/

« FRSthRIE Dijkstra v
g u
« BIMRFEBAT I
+ DFS and BFS et it BF topo sort
BF

5
o SRR S U YR -
\/}_M/' E[35ibu] ggkst ?ojpo o
o SAEE B
« Bellman-Ford(BF) &% ((BFA, JEERIFRER)
« ETHRINEFRIBFEE (ATEIERA, (BARBRFIAEEEdag)
« Dijkstra(D]) Bi% (ROKRES, SIMAKEAG) (FIREE, {(EFEEEHN)

o EREDNT RESH

Chapter 25 Floyd

e Floyd-warshall i /R %5 [(% 3 P 6.«
A2 : O(n?)

af://n175

The structure of a shortest path
o The Floyd-Warshall algorithm considers the intermediate vertices of a shortest path, where an intermediate vertex of a
simple pathp =<v, ,v,, ..., v, >Iis any vertex of p other than v, or v, , that is, any vertex in the set {w, ,v;. ..., v, }

- / perrre = .
BERER p NimmE My, Et=Ep 8 "28)" s
[PDF] Algorithm 97: shortest path
_ RW Floyd - Communications of the ACM, 1962 - dl.acm.org
FI Oyd warshall ;E ¢ onlment This procedure will perform different order arithmetic operations with b and c, putting
3 the result in a. The order of the operation is given by op. For op= 1 addition is performed.
Jﬁ:ﬂob'd , HIFE % (857 09318 EIRRY: BEXE FE 3 MEA
H Fwarshalli£ H
Vard Atheorem on boolean matrices
Eg E:.F?E/J\%EBEE(J S Warshall - Journal of the AGM (JAGM), 1962 - dl.acm.org
(SO @’ . Given two boolean matrices A arid B, we define the boolean product AAB as that matrix
1%5'23 ° whose (i, j)th entry is vk(a~/, A bki). We define tile boolean sum AVB as that matrix whose (i, j)th ...
* M W3R HIIAERE: 1B A 7 AR

L ﬁ&d@\% %ﬂ:dp
RIS SE 4, j 2 I8 W] DAZE I R 6 T i

p BN i Bl j RIRABRRAR st-path-o(i.j), "ZI8)" T from {1.,2, .. k}:

o YR A ARRER p EEOTRA, W st-parh-(i, j) MZBEIRRETF (1.2,
. k1}, Bp, ZI8THsS from {1.2, .k} B st-path-6(i, j) FEEZIEIR
/M= from {1.2, ..., k1) BY st-path-6(i, j):

o IR kREEp FTRR, W st-path-o(i, j) AFEEBOHARE i -k 2),
Heh p BZETRERETF (1.2, k1) B89 stpath-06, k). p, FER,

A recursive solution to the all-pairs shortest-paths problem
Let d,(,“ be the weight of a st-path-6(i, j) for which all intermediate vertices are in the set {1,2, ... , k}. Whenk =0, a
path-p(i, j) has no intermediate vertices at all. Such a path has at most one edge. We define recursively

all intermediate vertices k=1 allintermediate vertices in {1.2,... k — 1

w;; ifk =0,
i min (d P d$V +d* V) itk =1,

P .J\ n\(cnncI. L2.....k}

Because for any path, all intermediate vertices are in the set {1,2, ... , n}, the matrix p® = (4(") gives the
final answer: ¢! =s6.j) forall i, j EV.

PRI i B j AUBITERE st-parh-0i,), p i) "ZIA)" TR from (1,2, .. .k}, HIKEE (IU&) A 4

WS kA REER p EROTRARR, W st-parh-0(i, j) ZIBTRS3RET (1,2, .. k1), BD, ZIETAR
from {1.,2. ..., k} B st-parh-6(i, j) FRBZETRAR from {1.,2 k-1} B9 st-path-6(i. j):

WISR K REER p LRI, W se-path-0.) EAFSEBSHARE i 2 2, Hehp, BZAMRET
(1,2, .., k-1} B9 st-path-6(i, k), p, FIE,

o Floyd4: % B S Bt) B 12 i
RIGZiA, TTLL O(n) SR8 R # 12

g%)Wy ifk =0,
7= Vi 400+) itk 1.
Constructing a shortest path (FIEERIGERR)
We compute a sequence of matrices 10, 1D, ... | [T, where IT=I1 and we define n{(/“') as the predecessor
of vertex j on a shortest path from vertex 7 with all intermediate vertices in the set {1, 2, ... , k}

m,® FTM i B j IERAERRE (ZEIHAR from (1,2, .., &}) 517 B9RIIRTS =

@ _ JNIL ifi = jorw; = o0,
v i ifi # j and w;; < oo.

k1) e e - k—
7(,5 Y lfd,g Vo< dlf RS :ik(, v,

N(k) _ i J
k=1) e lk—1) k—1) *k-1)
T ifd; " >dy " +dg

i

ﬁﬁ@w,
() kTR L, BITRARMZARAR. 2, k1), B 0= e
(@) KEEBIGEE L, iy o HIBIE) BRI ko b ROBIIE 7,

Chapter 26 & ki

. BAR: NIRAMBHRAMRENR, s/ \oElakRE.

e Capacity: a maximum rate at which the material can flow through the conduit
FE BEEEINGEK ate (BUMNEHNEE)
e Flow conservation: the rate at which material enters a vertex must equal the rate at which it leaves the vertex
FFE: RA—TRA material = FEHIZIRAA material
e Maximum-flow problem: we wish to compute the greatest rate at which we can ship material from the source to the sink without

violating any capacity constraints

BRAMSE: AREAFER, WRREICREE ship NEAFE (BRUREERT, B rate)

o Ford-Fulkerson’5 % : #8458 70 2k /7 i2:

af://n190

BIHERE: OF- f*), f* &K
T KET, F-FREIERAL
RERE: AR, R CAHEH IE G

A “method” rather than an “algorithm”. ({E4¥-185e#%/5i%, HFord FlFulkersonF 1956 2HAAX)
The Ford-Fulkerson method depends on three important ideas:

+ residual networks (RIRRML (GREEMLE. KEML) ZOBHE: FaE—Lih, EH HFEE
EINESNAR, IXEEONFADRL TIREBRIEANES IR [185EER])
. augmenting paths (i‘%‘fﬁ%&@, F.%‘F‘%E?é) Ednmlmn\@su;kix‘nmn

"

Vancouver <0 Winnipeg
o cuts (E. £HE. E) o [O
3 e &
&)
Calgary Regina

FORD-FULKERSON-METHOD(G. §,1)

1 initialize flow f to 0

2 while there exists an augmenting path p in the residual network Gy
3 augment flow f along p

4 return f

Residual networks
residual capacity)
e c(u,v)— fu,v) if(u,v) ek,
(REEE: ENAK) cr(u,v) =4 f(v,u) if (v,u) e E ,
1 _EREEIENIN AR g
RAGRSEZICEERR ——

’> 122

e G %

W U

/3\/} = 1O)

& »
K3 (7)) I i
NG TN

5 - 0 otherwise .

@
Example: let u < s, v «<— v, there are c(u, v)= 16 and f{u, v) = 11, then we can increase f(u, v)
by up to ¢, (u, v) =5 units before we exceed the capacity constraint on edge (u, v). We also wish
to allow an algorithm to return up to 11 units of flow from v to u, and hence ¢, (v,) = 11,

e E-K®#:: (Edmonds-karp&ik)
TEF-FE il FHBFS 4R 45
B AREE: O(V - E?)

(E-KEESEbRmt A F-FRE I — Mol (B —M ARSI |
Uk, F-FRRNT5:

EDMONDS-KARP(G, s, 1)
1 for each edge (v, v) €E E
2 flu,v] <0

3 while there exists a path p from s to 7 in the residual network G, (using BFS)
4 cf(p) <+ min {L‘/(tl, v): (u,v)isinp}

5 for each edge (u, v)inp

6 if(u,v) € E

7 N, v] = flu, v] +¢fp) e

8 else /[v, u] — /v, u] - cAp) »»_,_--*"‘J

oV)

HIERRAR: XA (I i8E p FRsvERD) .
B p EINR—R, RBIHK, 1 (u,v) BBOYRIEAXRA (FA s BIR=
v RSGEE R ETTEINTREEI) ; HERD; EKEENTPALEE

O(r-E) (REnLiink, FRAEMBE, BORRE) . SRIEEREmAmigm
RAHE(E, BJEA OE). RESE O(VE).

LR Yefim Dinitz F1970543, FFEH Jack Edmonds FlRichard Karp F
19726 &R, E-KENESERRRRF-FEIA—FhaoH (k—FREAsCH) |
I, F-FRRATTE!

Chapter 33 it & JL{
e HAMMAS:

af://n208

o A convex combination(h2H5) of two distinct points p, = (x, ;) and
P> = (x5,) 1s any point p;y = (x5, ¥5) such that for some « in the range
0<a<1, we have
xy=ax;+(l-a)x, and y=ay +(1-a),. "

We also write that p;=ap, +(1-a)p,. [

e pj is any point that is on the line passing through p; and p, and is on or
between p; and p, on the line.

B p, fl p, BOVASE p; R pp, LIEFE— R (BiRRA) .
o M ﬁ W2
Graham: O(nlgn), #KFE Fil//Eilm) s, xR AT
Jarvis: O(nh), hJy'ME LRI AHE, W3R A /)
AndrewH 5 AGraham) — /N8R, AEUCR—AN2F5%
Some algorithms that compute the convex hull of a set of » points:
e Graham's scan ({8&/2i#), runs in O(nlgn) time
e Jarvis's march (B4R, runs in O(nh) time,
where A 1s the number of vertices &)
of the convex hull.
e Additional several methods I3

2

n incremental method, O(nlgn)

BEx (BRIEn—N, EHEE0g) o
n divide-and-conquer method, O(nlgn)
» prune-and-search method, O(nlgh)

B-HRL RROE RS, AERTES

Chapter 30 FFT
R T4 T8 Z I

s(t) = sin(60mt) + sin(30mt)?
s(¢) = sin(60xt) + sin(307t) + sin(90mt) ?

S(w) = fe"""‘s(t)dt

o FTROEATEEARMEMEL, FUNASTRGEUTES. MEM
THE—MERORY TS, THHHE R RN LA E MR RERL
EUMEIBARERS . ETFORRTEL, BEHTRAASHTED

oo A Lo, S BRI E M 2,
L EESS 9Ex BEH (Baon ke ¢ NFLE, MRRETRESERENQANAR. ELHRIENE ERET

Baptiste Joseph Fourier, 1768-1830) , B, SRR AMER, X—EFRUE EMETRAEAEAN &
HEEMYR, MEER, 76FIAARE WER, MRNFAMEEMERAGERFOMR, EETMIL0FRRI
FRER, 1830458 168%FFER. BH, it ATRB R B EDREE .

BUFSENMNERRL. ERAMRER o FFLF, "SHEIEREL, REEEIHEYMBDEL05HNE
? _‘ggﬁgg“gﬁggggf%ggﬁ BSGHER EARERA B, LALERE Fib i B R MR AR
SEREL TR, SFAETF, MEFFSHEHNME, AR EROTRES, KM

AT INRFMEMEREHE T REFOTFH.
o BILMHIE:

ZNAR (12085 - 12685) ,
i, HETEN (ST)IZE
FR) . BREEEER, 5
Fia. Wi, KHEITHRATT
FIASR,

af://n219

3

-1

e A coefficient representation of a polynomial 4x) =) ax/
=0

_ T P _1268m)
a=(ag,a,, " ,a,;)", column vectors T e
£B) . BREEHYR, 5
h. JiE, HEASRRT

e Convenient for certain operations. For example, HETAR,
o evaluating A(x) at a given point x, , takes time O(rn) using Horner's rule:
Alxo) = agtxg(artxyl ayt - +x(a,,tx(a,.))). EE RS

o adding two polynomials represented a = (a,, a;, -, a,.,)" and
b=(by, b, -, b,,)". takes O(n) time: we just produce the coefficient
vector ¢ = (cg, €1, =, 6,.1), Where ¢;= a+b, forj=0,1, -, n- 1.

o Hib:

e w,=¢* :principal nth root of unity (8247 n REHRAIETT)
e e=cos(u)+isin(u) [EHIAT)
the exponential of a complex number
@f =¥ = cos(27k [n)+isin(2xk / n),

k=01,-,n-1
e All of the other complex nth roots of unity are Bt
powers of @, . The n complex nth roots of unity ﬁﬁi‘g’f@éﬁﬁg
(@), k=0,-,n=1} form a group. w, EERWE—E.

KRREBEHS-MPR (18114:108258-1832458310) , 18111082584, EEHMFR. MRH

éa S S ENEE, R OAIRRAT R FERAOSIZNE, AL ART—SE%T

s BN, A2 AIPRES, SHESAEN ‘B W/EIBER (Galoks Group) . FEHRIE

8 BELFAARNEER IR ITIAR, SSRNSRIREARY, SN, SHERA,
\ﬁ/ S, PRI, 21 SR — Rt

U A WSRO R, BRSSP REL, EERABSR0E

A L —, RGBT AR 2SIV ARR, TR TEARER, PAT S

SXRIMFEREEAYS: SEAERRATR SR .

o BERMMAN —— KW AK:

BEMAIAT: RAAR

e'=cos(u) + i sin(u)
er+1=0
EENT:
1

REENEREHN c STHD. BAUKIIKR, A2 CRE0RE, NERCAIEE, EEEETTE?

2. REBNEH » STHP. HRISTEOTFENHELEE. "SEANAN EEEFEE=D?
(EF = Fl e B MRERAILEL)

3 %%%géi?i+%?ﬁ*.m%%§§:@ﬁﬁ%ﬁ%ﬁ%ﬁﬂ%ﬁiﬁ*,M%%MEmﬁﬁﬁ,

ERRIHIINE. .

4. REENRIUER@E. Tt 0, B 1, 2EEE,], BOESTR. NRFETEX (AHH)
BB, (FREHESIIEHNERY.

5 i%%gﬁﬁﬁimﬁﬂ¢.ﬁﬁﬁzﬁﬁmimﬁﬂﬂﬁﬂ?$ﬁ,ﬁﬁﬁﬁmm4ﬁ§5mﬁm8ﬁ
: FATE.

6. ENAXMEETEERE. WRES/NFH, MREE/FMENHFME. 57NS, TLUSHER
EEAS; 570, 1, ALMERIRMART, 57 AT ERE, tbRE=RRi 57 /METE
¥, FEARESEMN, BRETIRE/RN 4 T8, HENZESEON; BT « WETHRS, a7
TR EEEEREE.

L4 DFTB@%X:
ZHAERKAREE (BAERD

W) (17w
=l -1
M=Sax T T e G0n
=0 R o)

el
L

Yt ey

o wish to evaluate a polynomial A(X)=§UJX‘ at x = o.0.0 e

o without loss of generality, assume thé?jn =2m if not, leta,,, =0

o Discrete Fourier Transform (DFT): let 4 is given in coefficient form: a = (ag, a,,"*, a,.,)",
let x, = @f , define y,, fork=0,1, -, n-1, by

(R T A T a
n-l -1
" L6 @
n=A@)=2 a0, |7 <7 O : =
2 S o
Yt 1 o)Ln—l\‘l wLn—l\‘Z e a‘)(,n—l\‘(n—ll a,

y=DFT,(a) : HFBN L, STHARHREE (BMEHR)

o IR AR e L SR LA AR R I SR AR -

2l
=g

1 1 1 1
Yo 1 o ot) %
A e a,
¥, T o o o™ || g

e |1t oo
w |1 e o i a.
7, 1o & ot || a
¥; 1 of ..ol |4
¥y 1o & .. o \&

1 o 10 o 0 1 o y

1 o 01 0 o 1 o a

1 o 10 o 0 1 o a

_ 1 & 01 0 e 1 a’l|a

- 1 o] 10 o 0ff1 o a,

1 o 01 0 o 1 o a

1 & 10 & 0 1 't ag

1o 01 0 of 1 o) |4

Ex_GCD ¥ JERRJL B8 5 ik
o BE 2 MREANTMEE a, b, £ gcd(a, b) FREEE a fl b RALLIE
o x|y TR x EILAERRy , BDy 2 x AOfEEL

o TRENIREEIEATHREREE gcd(a, b), ERALATES x, M y,, #18
ax, + by, = gcd(a, b)

o KEEHE
+ Ei6—: 1% a, b RALATROREE], XHESEE 1, y, WE ax+by BEE
gcd(a,b) EB%, BP gcd(a, b) | ax + by
(BB, 0 <gcd(a, b) <ax+by; BB, k*gcd(a b) = ax + by, He1 < k)

o RIS FEEHI x y, 5 gcd(a b) = ax + by
(BP, gcd(a, b) < ax + by F9%ESa[EE, BP gcd 2 a f1 b MIR/NIELMAS)

Chapter 32 String Matching
o HIR & JE4:

e @ C x:string o is a prefix of x, if x = wy for some y € £*.

X X
EEEEN EEEE
@

y
prefix (o 2 x FIBIE) suffix

e @ 3x:wisasuflix ofx, if x = yw for some y € £*.
e Ifwcxorwax,then|o| <|x|
+ The empty string ¢ is both a suffix and a prefix of every string.
e For example, we have ab = abcca and cca =1 abeca.
+ For any strings x and y and any character a, we have x 3y if and only if xa = ya.

o C and 3 are transitive relations,

o FRHBILEHEZLLE:

af://n243
af://n246

B (KFEE) | BT

nEnE

Naive

B o Jc o c 1o o 1o Jc 1o |

(R RHaLE) I

p(ITs+1 . stm))
LT T eate)
FaERa

5p H5x",
p(P) WEAE

Naive vs RK vs FA vs KMP

d ﬂﬂﬂﬂ
o3 0] @ ® @
'FA
b a c 5P HE
e = ﬂ [n wﬁﬂl&
R 6.0) =3, EPRAEIA %ﬁﬁw MR-, WHPRIEE P, P
o4, a)=3, A4AT Nt 7S b, HMr P[3]) BES TR TF—NTES?
Sl ki " j%:ufvl\;fmaaﬁ Eag%ﬁ
P 0,5) | MNFRRIEN, WEE Vo AT,
Algorithm Preprocessing time Matching time
Naive 0 O((n—m+ 1)m)
Rabin-Karp ®(m) O((n—m+ 1)m)
Finite automaton O(m|X|) O(n)
Knuth-Morris-Pratt B (m) ®(n)
G (RS | R A I stmly b
ENCRENCENCNENCNEY
ES: HHE []
QNS Il ISR, pman ¢ G o >
FA | RdP. 0.5 | 84110 RE—R Naive vs RK vs FA vs KMP
(0] @ @ @
BNFRIIRICES, Yok P, — m
KMP | 3K 7(P) éﬁ‘?lr?ﬁﬁﬁ@@ﬂg}ﬂ = ‘. < BOEE -
| g {41-2, .t@l?’EEFHU! =

o HIRBZN (FFAMI) &1EH:

| sk, iaw) RS T HF— IR
), APRRERN, REg

[31/) The design and analysis of computer algorithms

AV Aho, JE Hopcroft - 1974 - Pearson Education India

Yo {717 99 SIF WSIEREL: 15831 MEANE A 9MER 99

e Many string-matching algorithms build a finite automaton (Machine) that scans
the text 7" for all occurrences of the pattern P.

e These string-matching automata are very efficient:

+ they examine each text character exactly

+ taking constant time per text character.

once ;

|

text T M ot‘:li‘lu'l
input T; built from —1 Mmaiching
! the pattern P case

e KMP: {E#: Knuth - Morris - Pratt

KMP is a linear-time string-matching algorithm due to Knuth, Morris,

and Pratt.

The accounting method
Running time? chapter17

KMP-MATCHER(T. P)

Amortized analysis (accounting)

COMPUTE-PREFIX-FUNCTION (P)

1 n = T.length @(}’l) 1 m = P.length @(l’l’l)
2 m = P.length 2 let z[l..m] be anew array

3 7 = COMPUTE-PREFIX-FUNCTION(P) 3 x[l]=0

4.4=0 4 k=0

5 fori =1ton 5 forqg =2tom

6 while ¢ > 0 and Plg + 1] # T[i] 6 while k > 0and P[k + 1] # P[q]
7 q = nlq] 7 k = nlk

8 if Plg+ 1] == T[i] 3 an[A+l]== 4]

9 g=q+1 9 =k

10 ifg==m 10 7lg] =k

11 print “Pattern occurs with shift” i —m 11 return 7

12 ¢ = 7lq]

prefix function

algl=max{k: k<gand P,3 P, }

KMP algorithm avoids computing

r [a[c[EEE] .
[]

[alb]alp a c a alsl=3

babaca aB=1

clababaca all]=0

P

zm

the transition function J, and

its matching time is ®(n) using just an auxiliary function z,
which we precompute from the pattern in time ®@(m) and store

m].

in an array z[1 ..

af://n264

Chapter 17 “F#E4 Hr
o PRS-

0 Inan amortized analysis, we average the time required to perform a
sequence of data-structure operations over all the operations performed.

AESNMEER, K—MEERTFSRIE

a With amortized analysis, we can show that the average cost of an
operation is small, if we average over a sequence of operations, even
though a single operation within the sequence might be expensive.

a Amortized analysis differs from average-case analysis in that probability
1s not involved; an amortized analysis guarantees the average
performance of each operation in the worst case.

a Amortized cost, DHEEZE: E—MRFLATFIHEZE (cost)

o BFTk:

o RAEIrHr (aggregate analysis) —— 114
e itlki% (the accounting method) —— ™43, KMP
o HEeIk

o RENT:

e In aggregate analysis, we show that for all », a
sequence of n operations takes worst-case time 7{(n)
in total.

e In the worst case, the average cost, or amortized cost,
per operation is therefore 7(n)/n.

o InMKkk:
+ Amortized cost : the amount we charge an operation.

+ Credit : when an operation’s amortized cost exceeds its actual cost, we assign the
difference to specific objects in the data structure as credit.
DERHES KT, ZRFET, (EHER. BRA (RLoESEINTSEEETER)
+ Credit can help pay for later operations whose amortized cost is less than their
actual cost.
* We denote the actual cost of the ith operation by ¢, and the amortized cost of the ith
operation by ¢;, we require

L
Yazie
i=1 i=1

For all sequences of n operations.
o The total credit
YiaG-Ya

o BEBYE:

o The potential method of amortized analysis represents the prepaid work as “potential energy”™
(potential), which can be released to pay for future operations
o We associate the potential with the data structure (DS) as a whole rather than with specific objects
within the data structure.
o The potential method works as follows:
+ We will perform » operations, starting with an initial DS D).
+ ¢;: the actual cost of the ith operation (i=1,2, ... , n).
+ D, the DS that results after applying the ith operation to DS D,
+ @ Apotential function & maps D; to a real number O(D,) , which is the potential associated with D,
o The amortized cost ¢; of the ith operation with respect to potential function @ is defined by
¢ =c¢; + P(D;) — d(D;_y)

af://n264

The total amortized cost

of the n operations is

The amortized cost C; of the ith operation with respect to potential function @ is defined by

G = ¢+ ®(D;) — P(D;)

N = Y (e + o) - e(D;)
=1 i=1
= Y i+ ®D,) —D(Dy)

i=1

Different potential functions may yield different amortized costs.

Chapter 34 NP Complete Problems

e NP Complete Problems:

We usually just define @(D,) to be 0 and then show that ®(D,) > 0 for all 7 .

FHEFMFME (2000-5-24, EENRSClay MFAAN, EERE=AFRERE—TEBE—THET)

HE I

~

. T Birch) FIHFAEMIE - 8i/R(Swinnerton-Dyer)$518 —
. E&(Hodge) B8

. ERHEN - BRFETHR(Navier-Stokes) /5T

. P(ZIMFEIEFTRR)EREXINP (AR EEEIRE)
. FENNZE(Poincare)i5HE

A

t.

o

This question tumed out to be extraordinarily difficult. Nearly a century passed
between its formulation in 1904 by Henri Poincaré and its solution by Grigory
Perelman, announced in preprints posted on ArXivorg in 2002 and 2003.

HIEDH P& ArXiv.org HEFE TUERR AR,

Havhee-Stokez Equation

(L

fEEah s, “INREANERRER, EHEFMNEUETEN. - 2006580, b

EETEENRFRBNREZHN TEREE" | RR RS IEEREZHERN FET [

EET, iRl “EERTESSE. BHAEmsmE? - Riomann Hypotiis
RS (Riemann)Rig e e L e e

Mathersaties Insttuta of Cambriage. Ma

1% - H/RER(Yang-Mills S EMFIREE O

i) AR SR A .

o P .

P is the class of decision problems that can be solved in

polynomial time (O(#"), where k is a constant). Intuitively, the

problems in P class are easy problems.
P IEJRE: ZTAZUATEIA R ARAYFIEIRIRE
-

o EHAAT, EEFHERNER
+ EEGH, T uEy BETFRANT L—REE

o NP :

NP is the class of decision problems for which we can verify

the correctness of solutions in polynomial time.

NP (G722 AR AT RIERY#)ERIRR

+ This doesn’t say it is easy to find a solution.

+ In fact, it is often hard to find a solution!

e NPCHE: GITAEMEINPCIHE, MAHE 2 miH

)

BT A BINPC i) & 45 7] LU 4k yBoolean Satisfiability

(CNF&EHGERD (SATHi 2t E D) (55253 %)

MR REEZRD

(el

af://n288

o Intitively, NP-Complete is the class of the “most difficult” problems in NP

All NP-Complete problems appear to be difficult.
No polynomial-time algorithm has been found for any NP-Complete problem. (RHHE NPC, BigEHRIISHAEE) For

example,

« Hamilitonian cycle problem

« Boolean Satisfiability (5/Rel#EEIEEE)
NPC [E)RE: H15R NP E)REROFRS TRl Seab e LIt S U REIPOiT IERR S TROMEH, RO NeC R (ResutImER) .
—EFIEHAEE C NP RS (NPC) #, WUR:
1 BENERER NP R,

2. FER b NpC @] LB C Eil.

NP-Complete

NP

@ NP-hord: FIFHEREIE A, FABE, Bty Ne g spaTLl
HHEIE, (NP-Had B NPC SREOTERI) NPCHD

NP-hard SIS BT : W —NEME AR5 NP-hard
[, TR A BEWT NP,

o FTERY NPC EBa] LITESSH2/0 Boolean Satisfiability
e Cook F1971iEBAT Sat & NPC, ITEATIAY NPC BEid30007?
o JISR{E— NPC [ARES (R, WFTE NPC E RS MUATRE!

NP
D (e
o RSAAHAME RS - NPHMNH & HEFWES:

e The concept of a public-key cryptosystem is due to Diffie
and Hellman, 1976

e The RSA cryptosystem (1977, MIT) was proposed by
Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman,
(Turing Award, 2002)

WikTe

" Thomas H. Cormen Charles E. Leiserson
(m
B Ronald L. Rivest Clifford Stein

Rivest Shamir Adleman

Adi Shamir (2002, EIR¥; 2024, FIREL) ,
2009FEALAIAY, IREHE "BRMEZLRRZTHRRN" |
R B AR MBI

	算法选择题复习
	Chapter 0 Preface
	Chapter 1 The role of algorithms in computing
	Chapter 2 Framework for analyzing algorithms
	Chapter 3 Growth of functions
	Chapter 4 Recurrences
	Chapter 5 rand
	Chapter 6 Heapsort
	Chapter 7 Quicksort
	Chapter 8 Sorting in Linear Time
	Chapter 9 sort order
	Chapter 15 dp
	Chapter 16 Greedy Algorithm
	Chapter 22 图算法基础
	Chapter 23 最小生成树
	Chapter 24 单源最短路
	Chapter 25 Floyd
	Chapter 26 最大流
	Chapter 33 计算几何
	Chapter 30 FFT
	Ex_GCD 扩展欧几里得算法
	Chapter 32 String Matching
	Chapter 17 平摊分析
	Chapter 34 NP Complete Problems

