Contents

Template 2
BIABATI . . o 2
I . . e 4
HEFE . o o e 6

AFHHERE e 6
HEHEE . . . 7
BRERHERE e 10
1= 12
CHEBETEMIBBFEREL o e 15
BT ET . . e 15
B . . . e 16
1R/~ = 40 17
B . e 19
DFS . e e e e e e e e e e e e e 19
EMHERFE . . o . o e 21
DFSHRFMAERE o o e 22
DFSTRIFEIBITE - - - - v v v o e e e e e e e e e e 24
BNVERBE . 26
B . . . e 30
47,0 O 35
o 43
1 w2~ 45
-3 (<~ 49
B . . . e 54
[7 2 2 54
GCD . L e e e e e e e e e e e e e e 58
BMRIRATE . . 59
BT IER R e 60
CRT e e e e e e e e e e e e 60
FRFRITHED e 62
KMP . e e e e e e e e e e e e e e e 62
TFETUA . . . e 64
RaNdoOm e e e e e e e e e 69
shuffle . . . o o o 69
WA . e 69

Template

EESE

1 2 3 4 5
le6 1000003 1000033 1000037 1000621 1000621
1le9 1000000007 1000000009 1000000021 1000000993 1000001011
1le9 1000000007 1000000009 1000000021 1000000993 1000001011

lel4 100000000000031 100000000000067 100000000000097 100000000001623 100000000001647

B RS

#include <cstdio>
#include <deque>
#include <vector>

class MonotoneQueue {
private:
struct QueuelItem {
int data;
size_t 1dx;

explicit constexpr Queueltem(int data_, size_t didx_)
¢ data{data_}, idx{idx_} {};
}3

std: :deque<Queueltem> queue;
size_t window_length;
bool increasing;

size_t idx;

public:
explicit MonotoneQueue(size_t window_length_, bool increasing_)
: window_length{window_length_}, increasing{increasing_}, 1idx

{o} {1

void put(int data) {
idx++;

while (!queue.empty() && (idx - queue.front().idx) >=
window_Tlength) {
queue.pop_front();

}

if (dincreasing) {
while (!queue.empty() && queue.back().data > data) {
queue.pop_back();
}
} else {
while (!queue.empty() && queue.back().data < data) {
queue.pop_back();
}
+

queue.emplace_back(data, idx);

}

int get() const { return queue.front().data; }
}s5

int main(void) {
size_t n, k;
n==%k= 0;

std::scanf ("%zu%zu", &n, &k);

std::vector<int> input_list;
input_list.reserve(n);

for (size_t i = 0; i < nj; i++) {
int data = 0;
std::scanf("%d", &data);
input_list.push_back(data);
}

MonotoneQueue min_queue{k, true};
MonotoneQueue max_queue{k, false};

for (size_t i = 0; i < nj i++) {
min_queue.put(input_1list[i]);

if (i >= (k - 1)) {
std::printf("%d ", min_queue.get());
+
}

std::putchar('\n');

for (size_t i = 0; i < n; i++) {
max_queue.put(input_1list[i]);

if (i >= (k - 1)) {
std::printf("%d ", max_queue.get());

}
std::putchar('\n');

return 0;

KTt

#include <utility>
#include <vector>

typedef long long i64;

class Heap {
public:
std::vector<i6e4> heap;
size_t heap_size;

explicit Heap() { heap_size = 0; }
explicit Heap(std::vector<i64> const &num_Tlist) {
heap = num_Tlist;
heap_size = num_list.size();
if (num_list.size() >= 2) {
size_t idx = num_list.size() / 2 - 1;
for (size_t i = 0; i <= num_list.size() / 2 - 1; i++) {

max_heapify(idx);

idx--3

}
public:
i64 heap_maximum() { return heap[0]; }
164 heap_extract_max() {
i64 max_value = heap[0];
heap[0] = heap[heap_size - 1];
max_heapify(0);

heap_size--;
return max_value;

s

void heap_increase_key(size_t i, 164 new_key) {
heap[i] = new_key;

while (i >= 1 && heap[parent(i)] < heap[i]) {
std: :swap(heap[parent(i)], heap[i]);

i = parent(i);
}

void heap_insert(i64 key) {
heap.push_back(0);

heap_increase_key(heap_size - 1, key);
heap_size++;

}

private:
inline size_t left(size_t i) { return 2 *x i + 1; }

inline size_t right(size_t i) { return 2 * i + 2; }
inline size_t parent(size_t i) { return (i - 1) / 2; }

void max_heapify(size_t i) {
while (1) {
size_t left_idx = left(i);
size_t right_idx = right(i);

size_t largest_idx = 1;

if (left_idx < heap_size && heap[left_idx] > heap[i]) {
largest_idx = left_idx;
}

if (right_idx < heap_size && heap[right_idx] > heap[
largest_idx]) {
largest_idx = right_idx;

}

if (largest_idx != i) {
std::swap(heap[i], heap[largest_idx]);

i = largest_1idx;
} else {
break;

}

HEFF
IAFHHERF

#include <algorithm>
#include <cstdio>
#include <vector>

typedef long long i64;

void merge(std::vector<i64> &arr, size_t p, size_t q, size_t r);
void do_merge_sort(std::vector<i64> &arr, size_t p, size_t r);
void merge_sort(std::vector<i64> &arr);

int main(void) {

}

size_t n = 0;
std::scanf ("%zu", &n);

std::vector<i64> num_list;
num_Llist.reserve(n);

for (size_t i1 0; 1 < nj di++) {

i64 num 0;
std::scanf("%lld", &num);
num_T1list.push_back(num);

}

merge_sort(num_list);

for (i64 num : num_list) {
std::printf("%lld ", num);

h;

std::putchar('\n');

return 0;

// merge sorted [p, q] and [q + 1, r]
void merge(std::vector<i64> &arr, size_t p, size_t q, size_t r) {

std::vector<i6e4> aux;
aux.reserve(r - p + 1);

size_t i = p;
size_t j q + 1;

while ((i <= q) && (j <= r)) {
if (arr[i] <= arr[j]) {
aux.push_back(arr[i]);

T++;

} else {
aux.push_back(arr[j]1);
Jt+s

+

}

while (i <= q) {
aux.push_back(arr[i]);
it++;

}

while (j <= r) {
aux.push_back(arr[j]);
Jtts

}

std::copy(std::begin(aux), std::end(aux), std::begin(arr) + (long)p
)3
}

void do_merge_sort(std::vector<i64> &arr, size_t p, size_t r) {
if (p == r) {
return;
}

size_t g =p + (r - p) / 2;

do_merge_sort(arr, p, q);
do_merge_sort(arr, q + 1, r);

merge(arr, p, g, r);

}
void merge_sort(std::vector<i6e4> &arr) {
if (arr.empty() || arr.size() == 1) {
return;

}

do_merge_sort(arr, 0, arr.size() - 1);

HEHERF

#include <cstdio>
#include <utility>
#include <vector>

typedef long long 1i64;

class Heap {
public:
std::vector<i6e4> heap;
size_t heap_size;

explicit Heap() { heap_size = 0; }
explicit Heap(std::vector<i64> const &num_Tlist) {
heap = num_Tlist;
heap_size = num_list.size();
if (num_list.size() >= 2) {
size_t didx = num_list.size() / 2 - 1;
for (size_t i = 0; i <= num_list.size() / 2 - 1; i++) {

max_heapify(idx);

idx--3

}

public:
164 heap_maximum() { return heap[0]; }
i64 heap_extract_max() {
i64 max_value = heap[0];

heap[0] = heap[heap_size - 1];
max_heapify(0);

heap_size—--;

return max_value;

}

void heap_increase_key(size_t i, 164 new_key) {
heap[i] = new_key;

while (i >= 1 && heap[parent(i)] < heap[i]) {
std: :swap(heap[parent(i)], heap[i]);

i = parent(i);
}

void heap_insert(i64 key) {
heap.push_back(0);

heap_increase_key(heap_size - 1, key);
heap_size++;

void max_heapify(size_t i) {
while (1) {
size_t left_idx = left(i);
size_t right_idx = right(i);

size_t largest_idx = 1;

if (left_idx < heap_size && heap[left_idx] > heap[i]) {
largest_idx = left_idx;
}

if (right_idx < heap_size && heap[right_idx] > heap[
largest_idx]) {
largest_idx = right_idx;

}

if (largest_idx != 1) {
std::swap(heap[i], heap[largest_idx]);

i = largest_idx;
} else {
break;

}
}

private:
inline size_t left(size_t i) { return 2 *x i + 1; }

inline size_t right(size_t i) { return 2 * i + 2; }

inline size_t parent(size_t i) { return (i - 1) / 2; }
}s
std::vector<i64> heap_sort(std::vector<ie4> const &list);
int main(void) {

size_t n = 0;
std::scanf ("%zu", &n);

std::vector<i64> num_list;

num_Llist.reserve(n);

for (size_t i = 0; i < n; i++) {
i64 num = 0;

std::scanf("%lld", &num);
num_T1list.push_back(num);

std::vector<i64> sorted = heap_sort(num_1list);
for (i64 num : sorted) {
std::printf("%lld ", num);
}
std::putchar('\n');

return 0O;

std::vector<i64> heap_sort(std::vector<i64> const &list) {
Heap heap{list};

if (list.empty()) {
return list;

}

for (size_t i = 0; i < list.size() - 1; i++) {
std: :swap(heap.heap[0], heap.heap[list.size() - 1 - i]);

heap.heap_size--;

heap.max_heapify(0);
}

return heap.heap;

BRIE HEFF

#include <cstdio>
#include <random>
#include <vector>

typedef long long i64;
i64 partition(std::vector<i6e4> &list, i64 p, 164 r);
void do_quick_sort(std::vector<i64> &list, i64 p, 164 r);
void quick_sort(std::vector<i64> &list);
void random_permutation(std::vector<i64> &list);
int main(void) {
size_t n = 0;
std::scanf("%zu", &n);

std::vector<i64> num_list;

num_Llist.reserve(n);

10

for (size_t i = 0; i < n; i++) {
i64 num = 0;
std::scanf("%1ld", &num);
num_T1list.push_back(num);

}

quick_sort(num_1list);

for (i64 num : num_list) {
std::printf("%lld ", num);

+

std::putchar('\n');

return 0;

}

// partition range [p, r]
i64 partition(std::vector<i6e4> &list, i64 p, i64 r) {
i64 pivot = list[(size_t)r];

i64 i = p - 1;
for (964 j = p; j <= r - 1; j++) {
if (list[(size_t)j] <= pivot) {
i+t
std::swap(list[(size_t)i], list[(size_t)jl);
}

std::swap(list[(size_t)i + 1], list[(size_t)r]);

return i + 1;

}

void do_quick_sort(std::vector<i64> &list, 164 p, i64 r) {

if (p < r) {
i64 q = partition(list, p, r);

do_quick_sort(list, p, q - 1);
do_quick_sort(list, q + 1, r);

}

void quick_sort(std::vector<i64> &list) {
if (list.empty()) {
return;

}

random_permutation(list);

11

do_quick_sort(list, 0, (i64)(list.size() - 1));
}

void random_permutation(std::vector<i64> &list) {
auto const seed = 84841984;

std::mt19937 urbg{seed};
for (size_t i = 0; i < list.size(); i++) {
std::uniform_int_distribution<size_t> distr{i, list.size() -
1};

std::swap(list[i], list[distr(urbg)]);

#include <stddef.h>
#include <stdint.h>
#include <string.h>

#define SIPHASH_COMPRESSION_ROUND 2
#define SIPHASH_FINALIZATION_ROUND 4

#define ROTL(x, b) (uint64_t) (((x) << (b)) | ((x) >> (64 - (b))))

uint64_t siphash(uint64_t k_0, uint64_t k_1, void *msg, size_t msg_len)

)

uint64_t siphash(uinté4_t k_0, uint64_t k_1, void *msg, size_t msg_len)

{

uinté4_t v_0 = k_0 » 0x736f6d6570736575;
uinte4_t v_1 = k_1 » 0x646f72616e646f6d;
uint64_t v_2 = k_0 " Ox6c7967656e657261;
uint64_t v_3 = k_1 » Ox7465646279746573;

size_t normal_count = msg_len / 8;
uint64_t *current_word_ptr = (uint64_t *)msg;

for (size_t i = 0; i < normal_count; i++) {
uint64_t current_word = *current_word_ptr;

v_3 7= current_word;

for (int j = 0; j < SIPHASH_COMPRESSION_ROUND; j++) {
// SipRound
{

12

< < < < < < < < <

< <
w =
1

N ©
+
1

ROTL(v_1,
= ROTL(v_3,

w =
|

w =
1]

(o}
1l
X
(@]
=
—
—~
I<
(o)

ROTL(v_1,
ROTL(v_3,

1 V_2;
3 A= v_0;

N
1

ROTL(v_2,

v_0 7= current_word;

current_word_ptr++;

}

uint64_t final_word = 0;

13);
16);

32);

17);
21);

32);

memcpy (&final_word, current_word_ptr, msg_len - normal_count * 8);

final_word |= (msg_len % 256) << 56;

v_3 A= final_word;

for (int j = 0; j < SIPHASH_COMPRESSION_ROUND; j++) {

// SipRound

{

< < < <

< <
w

_0
_2

w =

+
+

v_1;
v_3;
ROTL(v_1, 13);
ROTL(v_3, 16);

v_0;
V_2;

ROTL(v_0, 32);

13

< <
N

w =
1

< <

+
+

v_1;
v_3;
ROTL(v_1, 17);
ROTL(v_3, 21);

V_2;
v_0;

ROTL(v_2, 32);

v_0 *= final_word;

v_2 A= Oxff;

for (int j =

®; j < SIPHASH_FINALIZATION_ROUND; j++) {

// SipRound

{

< <

_0
_2

< <
w

< <
w =

I<
(o]

< <
oN

w =
1

< <

+
+

v_1;
v_3;

ROTL(v_1, 13);
ROTL(v_3, 16);

v_0;
V_2;
ROTL(v_0, 32);
v_1;
v_3;

ROTL(v_1, 17);
ROTL(v_3, 21);

V_2;
v_0;

ROTL(v_2, 32);

return v_0 A v_1 A v_2 N v_3;

}
int main(void) {

uinté4_t k_0
uinte4_t k_1

Ox0706050403020100;
0x0f0e0dOcObOan908;

14

uint8_t buf[15]
Ox08, Ox09, Ox0a, OxOb, Ox0c, 0x0d, Ox0e};

uint64_t result = siphash(k_0, k_1, buf, 15);
uint64_t expected = 0xal29ca6l49be45e5;

return 0O;

C+H HE LS FH R

struct TM_hash {
// 32bit integer hash by T. Mueller
constexpr std::size_t
operator () (std::uint32_t k) const noexcept {
k = ((k > 16) * k) * 0x45d9f3b;
k ((k >> 16) A k) * 0x45d9f3b;
k = ((k > 16) * k);
return k;
}
}s

std::unordered_set<std::uint32_t,TM_hash> s;

=RKFEFFI

/] mKAHETFF, fi]"‘*ﬁ&be =4, O(N1
BT kﬂ*ﬁﬁ
% % T)7 3 (Lﬁ, 2=

ogN)
ﬁ%ﬁﬁWH
MEHER) , ERAZ_2ERETK

/] EERKAETFAGNKE AdpH By & A E

#include <vector>
#define MY_INFINITY (1LL << 60)

typedef long long 1i64;
i64 get_length(std::vector<i6e4> const &list, i64 left, i64 right,

val);
std::vector<i64> calc_dp(std::vector<i64> const &num_list);

std::vector<i6e4> calc_dp(std::vector<i64> const &num_list) {
std::vector<ie4> dp;
dp.resize(num_list.size(), 0);

std::vector<i64> max_last_element_by_length;

{0x00, 0x01, 0x02, Ox03, 0x04, Ox05, Ox06, Ox0O7,

max_Llast_element_by_length.resize(num_list.size() + 1, -MY_INFINITY
)

max_last_element_by_Tlength[0] MY_INFINITY;

dp[0] = 1;
max_last_element_by_length[1]

num_1ist[0];

for (size_t i = 1; i < num_list.size(); i++) {
i64 prev_max_length =
get_length(max_last_element_by_length, 1, (i64)i, num_list[
i1);

dp[i] = prev_max_length + 1;

if (max_last_element_by_length[(size_t)dp[i]l] < num_list[i]) {
max_last_element_by_length[(size_t)dp[i]] = num_list[i];
h
}

return dp;

}

i64 get_length(std::vector<i64> const &list, i64 left, 164 right, i64
val) {
while (left <= right) {
i64 mid = (left + right) / 2;

if (list[(size_t)mid] < val) {
right = mid - 1;

} else if (list[(size_t)mid] > val) {
left = mid + 1;

} else {
left = mid + 1;

}

}

return right;

HEE

#include <cstddef>
#include <numeric>
#include <vector>

using std::size_t;

struct DisjointSet {

16

std:
std:

:vector<size_t> set;
:vector<size_t> set_size;

explicit DisjointSet(size_t size) {

}

set.resize(size);
set_size.resize(size, 1);
std::iota(std::begin(set), std::end(set), 0);

size_t find(size_t x) {

}

std::vector<size_t> path(16);

while (set[x] !'= x) {
path.push_back(x);
x = set[x];

}s3

for (size_t node : path) {
set[node] = x;

}

return x;

void unite(size_t x, size_t y) {

+s

miL 2345

#include
#include
#include
#include

size_t x_root
size_t y_root

find(x);
find(y);

if (x_root == y_root) {
return;

}

if (set_size[x_root] < set_sizel[y_root]) {
set[x_root] = y_root;
set_sizel[y_root] += set_size[x_root];
} else {
set[y_root] = x_root;
set_size[x_root] += set_sizel[y_root];

<array>
<cstdio>
<utility>
<vector>

17

class LCA {
public:
std::vector<std::array<size_t, 32>> parent_info;
std::vector<size_t> node_depth;

private:
std::vector<std::vector<size_t>> const &tree;
size_t const tree_root;

public:
explicit LCA(std::vector<std::vector<size_t>> const &tree, size_t
root)
: tree{tree}, tree_root{root} {
parent_info.resize(tree.size());
node_depth.resize(tree.size());

dfs(tree_root, 0);
}

public:
size_t lca(size_t u, size_t v) {
if (node_depth[u] > node_depth[v]) {
std::swap(u, v);

}
size_t depth_delta = node_depth[v] - node_depth[u];
size_t i = 0;

while (depth_delta > 0) {
size_t digit = depth_delta & 1;
depth_delta >>= 1;

if (digit == 1) {
v = parent_info[v][i];
}

++;

}
while (u != v) {
for (i = 0; i < 32; i++) {
size_t didx = 31 - 1;
if (parent_info[u][idx] != parent_info[v][idx]) {
u = parent_info[u] [idx];

v = parent_info[v][idx];

break;

18

return u;

}

private:
void dfs(size_t root, size_t depth) {
node_depth[root] = depth;

for (size_t child_node : tree[root]) {
parent_info[child_node][@] = root;

for (size_t i = 1; i < 32; 1i++) {
size_t p = parent_info[child_node][i - 1];

J/ 2 NG =2N (7 -1)+ 2N (7i-1)
parent_info[child_node][i] = parent_info[p][i - 1];
}

dfs(child_node, depth + 1);

+s

¥
N

DFS

#include <cstdio>
#include <vector>

size_t dfs_time = 0;
std::vector<std::vector<size_t>> graph;

std::vector<int> visited;
std::vector<size_t> parent;
std::vector<size_t> discover_time;
std::vector<size_t> finish_time;

void dfs_visit(size_t source_node) {
dfs_time++;
discover_time[source_node] = dfs_time;
visited[source_node] = 1;

for (size_t adjacent_node : graph[source_node]) {
if (visited[adjacent_node] == 0) {
parent[adjacent_node] = source_node;
discover_time[adjacent_node] = dfs_time;
dfs_visit(adjacent_node);

}

}

dfs_time++;
finish_time[source_node] = dfs_time;

void dfs_graph() {

int

dfs_time = 0;

visited.assign(graph.size(), 0);
parent.assign(graph.size(), 0);
discover_time.assign(graph.size(), 0);
finish_time.assign(graph.size(), 0);

for (size_t i = 1; i < graph.size(); i++) {
if (visited[i] == 0) {
dfs_visit(i);
}

main(void) {

size_t n, m;

n=m=0;

std::scanf ("%zu%zu'", &n, &m);

graph.resize(n + 1);

for (size_t i = 0; i < m; i++) {
size_t from_node, to_node;
from_node = to_node = 0;

std::scanf ("%zu%zu", &from_node, &to_node);

graph[from_node] .push_back(to_node);
}

dfs_graph();

for (size_t i = 1; i <= n; i++) {
std::printf("%zu ", parent[i]);

}

std::putchar('\n');

for (size_t i = 1; i <= n; i++) {
std::printf("%zu ", discover_time[i]);

}

std::putchar('\n');

20

for (size_t i = 1; i <= n; i++) {
std::printf("%zu ", finish_time[i]);

}
std::putchar('\n');

return 0O;

R

#include <queue>
#include <vector>

struct TopoResult {
int result_code;
std::vector<size_t> result;

s
/10 T 4%

// Sorted sequence cannot be
// determined, XTI HFFAE— (FH: EEHIANEAOHNTNANE S W
TENEKATL)

TopoResult topo_sort(std::vector<std::vector<size_t>> const &graph) {
// © -> Sorted sequence determined
// 1 -> Inconsistency found
// 2 —-> Sorted sequence cannot be determined.
int result_code = 0;
std::vector<size_t> result;
result.reserve(graph.size());

std::vector<size_t> in_count;
in_count.resize(graph.size(), 0);

for (std::vector<size_t> const &out_list : graph) {
for (size_t out_node : out_list) {
in_count[out_node]++;
}
}

std::queue<size_t> node_queue;

for (size_t i = 0; i < graph.size(); i++) {
if (in_count[i] == 0) {
node_queue.push(i);

}

if (node_queue.size() > 1) {
result_code = 2;

}

while (!node_queue.empty()) {
if (node_queue.size() > 1) {
result_code = 2;

}
size_t current_node = node_queue.front();
node_queue.pop();

result.push_back(current_node);
for (size_t other_node : graph[current_node]) {
if (in_count[other_node] == 1) {

node_queue.push(other_node) ;

}
in_count[other_node]--;
}

if (result.size() < graph.size()) {
result_code = 1;

}

TopoResult r = {result_code, result};

return r;

DFs #hhEFF

#inc
#inc
#inc

size
std:

std:
std:
std:
std:
std:

void

lude <algorithm>
lude <cstdio>
lude <vector>

_t dfs_time = 0;
:vector<std::vector<size_t>> graph;

:vector<int> visited;
:vector<size_t> parent;
:vector<size_t> discover_time;
:vector<size_t> finish_time;
:vector<size_t> topo_list;

dfs_visit(size_t source_node) {
dfs_time++;

22

discover_time[source_node] = dfs_time;
visited[source_node] = 1;

for (size_t adjacent_node : graph[source_node]) {
if (visited[adjacent_node] == 0) {
parent[adjacent_node] = source_node;
discover_time[adjacent_node] = dfs_time;
dfs_visit(adjacent_node);

}

dfs_time++;
finish_time[source_node] = dfs_time;

topo_Tlist.push_back(source_node);

}

void dfs_graph() {
dfs_time = 0;

visited.assign(graph.size(), 0);
parent.assign(graph.size(), 0);
discover_time.assign(graph.size(), 0);
finish_time.assign(graph.size(), 0);
topo_list.resize(0);

for (size_t i = 1; i < graph.size(); i++) {
if (visited[i] == 0) {
dfs_visit(i);
+
}

std::reverse(std::begin(topo_list), std::end(topo_list));
}

int main(void) {
size_t N = 0;

std::scanf("%zu", &N);
graph.resize(N + 1);

for (size_t i = 1; i <= N; i++) {
size_t a = 0;

while (std::scanf("%zu", &a) == 1) {
if (a == 0) {
break;
}

graph[i].push_back(a);

23

}
dfs_graph();

for (size_t node : topo_list) {
std::printf("%zu ", node);

}
std::putchar('\n');

return 0;

DFS 52EE 5 &

#include <algorithm>
#include <cstdio>
#include <vector>

size_t dfs_time;

std::vector<int> visited;

std::vector<size_t> finish_order;
std::vector<std::vector<size_t>> graph;
std::vector<std::vector<size_t>> reversed_graph;
std::vector<std::vector<size_t>> scc_by_node;

void dfs_passi();

void dfs_visit_passl(size_t source_node);

void dfs_pass2();

void dfs_visit_pass2(size_t source_node, size_t tree_root);
void generate_reverse_graph();

int main(void) {

size_t n, m;

n=m=0;

std::scanf("%zu%zu", &n, &m);

graph.resize(n + 1);

for (size_t i = 0; i < m; i++) {
size_t from_node, to_node;
from_node = to_node = 0;

std::scanf("%zu%zu", &from_node, &to_node);

graph[from_node] .push_back(to_node);

generate_reverse_graph();
dfs_passl();
dfs_pass2();

for (size_t i = 1; i <= nj i++) {
for (size_t scc_node : scc_by_node[i]) {
std::printf("%zu ", scc_node);
}
if (!scc_by_node[i].empty()) {
std::putchar('\n'");
}
h;

return 0;

}

void dfs_passi() {
dfs_time = 0;
visited.assign(graph.size(), 0);
finish_order.clear();

for (size_t i = 0; i < graph.size(); i++) {
if (visited[i] == 0) {
dfs_visit_passi(i);
}
}

std::reverse(std::begin(finish_order), std::end(finish_order));

}

void dfs_visit_passl(size_t source_node) {
dfs_time++;
visited[source_node] = 1;

for (size_t adjacent_node : graph[source_node]) {
if (visited[adjacent_node] == 0) {
dfs_visit_passl(adjacent_node);
}
}

dfs_time++;

finish_order.push_back(source_node) ;

}
void dfs_pass2() {
visited.assign(graph.size(), 0);

scc_by_node.resize(graph.size());

for (size_t node : finish_order) {

25

if (visited[node] == 0) {
dfs_visit_pass2(node, node);

}
X

void dfs_visit_pass2(size_t source_node, size_t tree_root) {
visited[source_node] = 1;
scc_by_node[tree_root].push_back(source_node) ;

for (size_t adjacent_node : reversed_graph[source_node]) {
if (visited[adjacent_node] == 0) {
dfs_visit_pass2(adjacent_node, tree_root);

}
}

void generate_reverse_graph() {
reversed_graph.resize(graph.size());

for (size_t i = 1; i < graph.size(); i++) {
for (size_t adjacent_node : graph[i]) {
reversed_graph[adjacent_node].push_back(i);

}

/N R

Kruslkal
#include <algorithm>

#include <numeric>
#include <vector>

struct DisjointSet {
std::vector<size_t> set;
std::vector<size_t> set_size;

explicit DisjointSet(size_t size) {
set.resize(size);
set_size.resize(size, 1);
std::iota(std::begin(set), std::end(set), 0);
}

size_t find(size_t x) {
std::vector<size_t> path(16);

while (set[x] != x) {
path.push_back(x) ;
x = set[x];

s

for (size_t node : path) {
set[node] = x;

}

return x;

}

void unite(size_t x, size_t y) {
size_t x_root = find(x);
size_t y_root = find(y);

if (x_root == y_root) {
return;

}

if (set_size[x_root] < set_sizel[y_root]) {
set[x_root] = y_root;
set_sizel[y_root] += set_size[x_root];
} else {
set[y_root] = x_root;
set_size[x_root] += set_sizel[y_root];

s
/11 Th

struct Edge {
size_t from;
size_t to;
int weight;

explicit constexpr Edge(size_t from_, size_t to_, int weight_)
from{from_}, to{to_}, weight{weight_} {};
13

/] Bl ER: 2 N\ Hyedge_listi # # 7
std::vector<kdge> Kruskal(std::vector<kdge> &edge_list, size_t
node_count) {
std::sort(std::begin(edge_list), std::end(edge_list),
[](Edge const &a, Edge const &b) { return a.weight < b.
weight; });
DisjointSet set{node_count + 1};

std::vector<Edge> result;

for (Edge const &edge : edge_list) {

size_t from = edge.from;
size_t to = edge.to;

size_t from_root = set.find(from);
size_t to_root = set.find(to);

if (from_root != to_root) {
result.push_back(edge);
set.unite(from_root, to_root);

}
if (result.size() == (node_count - 1)) {
break;
}
}
return result;
}
Prim

#include <queue>
#include <vector>

typedef long long i64;
[/ WAL 47, #1T 4

struct Edge {
size_t from;
size_t to;
164 weight;

explicit constexpr Edge(size_t from_, size_t to_, i64 weight_)
from{from_}, to{to_}, weight{weight_} {};
15

struct NodeInfo {
size_t node;
size_t parent;
size_t min_weight_edge_-id;
164 min_weight_to_tree;

explicit constexpr NodeInfo(size_t node_, size_t parent_,
size_t min_weight_edge_id_, i64 weight_
)
node{node_}, parent{parent_}, min_weight_edge_id{
min_weight_edge_id_},
min_weight_to_tree{weight_} {};

friend bool operator<(NodeInfo const &left, NodeInfo const &right)

28

{

return left.min_weight_to_tree > right.min_weight_to_tree;
+s

std::vector<kEdge> Prim(std::vector<std::vector<Edge>> const &graph) {
std::vector<int> visited;
visited.resize(graph.size(), 0);

std::vector<kEdge> result;
result.reserve(graph.size() - 1);

std::priority_queue<NodeInfo> node_queue;
visited[1l] = 1;

for (size_t i = 0; i < graph[l].size(); i++) {
size_t target_node = graph[1][i].to;
i64 weight = graph[1][i].weight;
node_queue.emplace(target_node, 1, i, weight);

}

while (!node_queue.empty()) {
NodeInfo next_node_info = node_queue.top();
node_queue.pop();

if (visited[next_node_info.node] == 0) {
visited[next_node_info.node] = 1;

result.push_back(graph[next_node_info.parent]
[next_node_info.min_weight_edge_-id]);

for (size_t i = 0; i < graph[next_node_info.node].size(); i
++) {
size_t target_node = graph[next_node_info.node][i].to;
164 weight = graph[next_node_info.node][i].weight;
node_queue.emplace(target_node, next_node_info.node, 1,
weight);

}

if (result.size() == graph.size() - 1) {
break;
}
}

return result;

29

R

RE
#include <vector>

#define MY_INFINITY (1LL << 61)
typedef long long 1i64;

struct Edge {
size_t to;
164 weight;

explicit constexpr Edge(size_t to_, 164 weight_)
: to{to_}, weight{weight_} {};
}s

struct BFResult {
bool valid;
std::vector<i64> shortest_distance;
std::vector<size_t> parent;

}s

BFResult BF(std::vector<std::vector<tEdge>> const &graph, size_t
source_node) {
bool valid = true;
std::vector<i6e4> shortest_distance;
std::vector<size_t> parent;

shortest_distance.resize(graph.size(), MY_INFINITY);
parent.resize(graph.size(), 0);

shortest_distance[source_node] = 0;

for (size_t i = 0; i < graph.size() - 1; i++) {

for (size_t from_node = 1; from_node < graph.size(); from_node

++) {
for (Edge const &edge : graph[from_node]) {
size_t to_node = edge.to;

if (shortest_distance[from_node] + edge.weight <
shortest_distance[to_node]) {
shortest_distance[to_node] =
shortest_distance[from_node] + edge.weight;
parent[to_node] = from_node;

}

for (size_t from_node = 1; from_node < graph.size(); from_node++) {

for (Edge const &edge : graph[from_node]) {

30

if (shortest_distance[from_node] + edge.weight <
shortest_distance[edge.to]) {
valid = false;

break;
}
}
if (lvalid) {
break;
+
}
return {valid, shortest_distance, parent};
}
HRFFE

#include <queue>
#include <vector>

#define MY_INFINITY (1LL << 61)
typedef long long 1i64;

struct Edge {
size_t to;
164 weight;

explicit constexpr Edge(size_t to_, 164 weight_)
: to{to_}, weight{weight_} {};
s

struct TopoResult {
int result_code;
std::vector<size_t> result;

15

struct DistanceResult {
std::vector<i6e4> shortest_distance;
std::vector<size_t> parent;

15

TopoResult topo_sort(std::vector<std::vector<kdge>> const &graph);
DistanceResult DAGShortestPath(std::vector<std::vector<Edge>> const &
graph,
size_t source_node);

// Sorted sequence cannot be
// determined, X rx#HIHFFAE— (£H: EEHANEAONT AN K4 K
TEAMNEATL)

31

TopoResult topo_sort(std::vector<std::vector<tEdge>> const &graph) {
// O -> Sorted sequence determined
// 1 -> Inconsistency found
// 2 -> Sorted sequence cannot be determined.
int result_code = 0;
std::vector<size_t> result;
result.reserve(graph.size());

std::vector<size_t> in_count;
in_count.resize(graph.size(), 0);

for (std::vector<Edge> const &out_list : graph) {
for (Edge const &edge : out_list) {
in_count[edge.to]++;
}
}

std::queue<size_t> node_queue;

for (size_t i = 0; i < graph.size(); i++) {
if (in_count[i] == 0) {
node_queue.push(i);
+
h;

if (node_queue.size() > 1) {
result_code = 2;

}

while (!node_queue.empty()) {
if (node_queue.size() > 1) {
result_code = 2;

}

size_t current_node = node_queue.front();
node_queue.pop();

result.push_back(current_node);

for (Edge const &edge : graph[current_node]) {
size_t other_node = edge.to;

if (in_count[other_node] == 1) {
node_queue.push(other_node) ;

}

in_count[other_node]--;

}

if (result.size() < graph.size()) {
result_code = 1;

32

}

TopoResult r = {result_code, result};

return r;

}

DistanceResult DAGShortestPath(std::vector<std::vector<Edge>> const &
graph,
size_t source_node) {
std::vector<ie4> distance;
std::vector<size_t> parent;

TopoResult topo_result = topo_sort(graph);
std::vector<size_t> topo_list = topo_result.result;

distance.resize(graph.size(), MY_INFINITY);
parent.resize(graph.size(), 0);

distance[source_node] = 0;

for (size_t from_node : topo_list) {
for (Edge const &edge : graph[from_node]) {
size_t to_node = edge.to;

if (distance[from_node] + edge.weight < distance[to_node])

{

distance[to_node] = distance[from_node] + edge.weight;
parent[to_node] = from_node;

}
}
}
return {distance, parent};
}
Dijkstra

#include <cstddef>
#include <queue>
#include <vector>

#define MY_INFINITY (1LL << 60)
typedef long long 1i64;
struct Edge {

size_t to;
164 weight;

33

explicit constexpr Edge(size_t to_, 164 weight_)
: tof{to_}, weight{weight_3} {}
}s

struct NodeInfo {
size_t node;
i64 distance;

friend bool operator<(NodeInfo const &left, NodeInfo const &right)
{

return left.distance > right.distance;

}

explicit constexpr NodeInfo(size_t node_, i64 distance_)
node{node_}, distance{distance_} {}

+s

std::vector<i6e4> dijkstra(std::vector<std::vector<kEdge>> const &
node_to_edges,
size_t source_node) {
std::vector<i64> result;
std::vector<int> visited;

result.resize(node_to_edges.size(), MY_INFINITY);
visited.resize(node_to_edges.size(), 0);

std::priority_queue<NodeInfo> node_queue;

result[source_node] = 0;
node_queue.emplace(source_node, 0);

while (!node_queue.empty()) {
NodeInfo current_node_info = node_queue.top();

node_queue.pop();

if (visited[current_node_info.node] == 1) {
continue;

}

for (Edge const &edge : node_to_edges[current_node_info.node])
{

size_t other_node = edge.to;

if (result[other_node] >
result[current_node_info.node] + edge.weight) {
result[other_node] =
result[current_node_info.node] + edge.weight;
node_queue.emplace(other_node, result[other_node]);

34

visited[current_node_info.node] = 1;

}
return result;
b
RKi
FK
/1 O(V(E*2))
/] RETRFAfi. EH. HHF
/] RFATA: FEF A
/] Ei: K EA A
/] B EEBR

#include <cstdio>
#include <cstring>
#include <queue>

#include <vector>

#define MAX_NODE 2005
#define INFINITY (1LL << 60)

typedef long long 1i64;
i64 residual_graph[MAX_NODE][MAX_NODE];

struct Edge {
size_t to;
164 weight;

explicit constexpr Edge(size_t to_, 164 weight_)
: to{to_}, weight{weight_3} {}
+s

class EK {
public:
size_t node_count;

private:
std: :vector<std::vector<size_t>> node_to_edges;

public:
explicit EK(std::vector<std::vector<Edge>> const &graph) {
std::memset(residual_graph, 0, sizeof(residual_graph));
node_count = graph.size() - 1;
node_to_edges.resize(graph.size());

for (size_t from_node = 0; from_node < graph.size(); from_node

35

}

++) {

for (Edge const &edge : graph[from_node]) {
size_t to_node = edge.to;
164 weight = edge.weight;

// antiparallel edge exists

// parallel edges are allowed

if (residual_graph[to_node][from_node] != 0) {
node_count++;

residual_graph[from_node] [node_count] += weight;
residual_graph[node_count] [to_node] += weight;

if (node_count > node_to_edges.size() - 1) {
node_to_edges.resize(2 * node_count);

3

// E &M Anode_to_edges (MM ARKE) FHEILK WA
node_to_edges[from_node].push_back(node_count);
node_to_edges[node_count].push_back(from_node) ;
node_to_edges[node_count].push_back(to_node);
node_to_edges[to_node].push_back(node_count);
} else {

residual_graph[from_node][to_node] += weight;
node_to_edges[from_node].push_back(to_node);
node_to_edges[to_node].push_back(from_node);

X
}

// remove self loop

for (size_t i = 0; i <= node_count; i++) {
residual_graph[i][i] = 0;
}

164 max_flow(size_t source_node, size_t target_node) {

i64 max_flow = 0Q;

while (true) {
i64 augment = rg_bfs(source_node, target_node);

// std::printf("augment: %1ld\n", augment);
if (augment == 0) {
break;

}

max_flow += augment;

36

return max_flow;

}

private:
i64 rg_bfs(size_t from_node, size_t to_node) {
std::vector<int> visited;

visited.resize(node_count + 1, 0);

std::queue<size_t> node_queue;
std::vector<size_t> parent;

parent.resize(node_count + 1, 0);
node_queue.push(from_node) ;
visited[from_node] = 1;

while (!node_queue.empty()) {
size_t current_node = node_queue.front();

node_queue.pop();

if (current_node == to_node) {
break;

}

for (size_t next_node : node_to_edges[current_node]) {
if (residual_graph[current_node][next_node] > 0) {
if (visited[next_node] == 0) {
visited[next_node] = 1;
parent[next_node] = current_node;
node_queue.push(next_node) ;

}

if (!lvisited[to_node]) {
return O;

}

size_t current_node = to_node;
i64 augment = INFINITY;

while (current_node != from_node) {
augment = std::min(
augment, residual_graph[parent[current_node]][
current_node]);
current_node = parent[current_node];

37

current_node = to_node;

while (current_node != from_node) {
residual_graph[parent[current_node]][current_node] -=
augment;
residual_graph[current_node] [parent[current_node]] +=
augment;

current_node = parent[current_node];

+
return augment;
+s
int main() {
int T = 0;
std::scanf("%d", &T);
for (int id = 0; id < T; dd++) {
size_t node_count, edge_count, source_node, target_node;
std::scanf ("%zu%zu%zu¥%zu", &node_count, &edge_count, &
source_node,

&target_node);
std::vector<std::vector<Edge>> graph;
graph.resize(node_count + 1);
for (size_t i = 0; i < edge_count; i++) {

size_t from_node, to_node;
from_node = to_node = 0;
i64 weight = 0;

std::scanf ("%zu%zu%lld", &from_node, &to_node, &weight);

graph[from_node] .emplace_back(to_node, weight);
}

EK ek{graph};

std::printf("%lld\n", ek.max_flow(source_node, target_node));

[/ RETRFATH. B, BF
[/ RFTHh: HAF K

/] &
TAEX

#include
#include
#include
#include

7 & A g
HEHR

<cstdio>
<cstring>
<queue>
<vector>

#define MAX_NODE 2005
#define INFINITY (1LL << 60)

typedef long long i64;

i64 residual_graph[MAX_NODE][MAX_NODE];

struct Edge {
size_t to;
164 weight;

explicit constexpr Edge(size_t to_, 164 weight_)

}s

: to{to_}, weight{weight_} {}

class Dinic {
public:
size_t node_count;

private:

std:

:vector<std::vector<size_t>> node_to_edges;

public:
explicit Dinic(std::vector<std::vector<Edge>> const &graph) {

std: :memset(residual_graph, 0, sizeof(residual_graph));
node_count = graph.size() - 1;
node_to_edges.resize(graph.size());

for (size_t from_node = 0; from_node < graph.size(); from_node

++) {
for (Edge const &edge : graph[from_node]) {
size_t to_node = edge.to;
164 weight = edge.weight;

// antiparallel edge exists

// parallel edges are allowed

if (residual_graph[to_node][from_node] != 0) {
node_count++;

residual_graph[from_node] [node_count] += weight;
residual_graph[node_count] [to_node] += weight;

39

if (node_count > node_to_edges.size() - 1) {
node_to_edges.resize(2 * node_count);

3

/] E &M #Enode_to_edges (M AR E) ¥ & LK ML
node_to_edges[from_node] .push_back(node_count);
node_to_edges[node_count].push_back(from_node);
node_to_edges[node_count].push_back(to_node);
node_to_edges[to_node].push_back(node_count);
} else {

residual_graph[from_node][to_node] += weight;
node_to_edges[from_node].push_back(to_node);
node_to_edges[to_node].push_back(from_node) ;

}
}

// remove self loop

for (size_t i = 0; i <= node_count; i++) {
residual_graph[i][i] = 0;
}
}

164 max_flow(size_t source_node, size_t target_node) {
i64 max_flow = 0;

while (true) {
std::vector<size_t> node_to_depth =
rg_bfs(source_node, target_node);

/[l CREZART X, FTHARBEAR) K2
if (node_to_depth[target_node] == 0) {
break;

}

i64 augment =

dfs(source_node, target_node, INFINITY, node_to_depth);

if (augment == 0) {

break;
}
max_flow += augment;
}
return max_flow;
}
private:
/] BFSa B, RE&EANF K8 EHK

40

std::vector<size_t> rg_bfs(size_t from_node, size_t to_node) {
std::vector<int> visited;

visited.resize(node_count + 1, 0);

std: :queue<size_t> node_queue;
std::vector<size_t> parent;
std::vector<size_t> depth;

parent.resize(node_count + 1, 0);
depth.resize(node_count + 1, 0);

node_queue.push(from_node);
depth[from_node] = 1;
visited[from_node] = 1;

while (!node_queue.empty()) {
size_t current_node = node_queue.front();

node_queue.pop();

if (current_node == to_node) {
break;

}

for (size_t next_node : node_to_edges[current_node]) {
if (residual_graph[current_node][next_node] > 0) {
if (visited[next_node] == 0) {
depth[next_node] = depth[current_node] + 1;
visited[next_node] = 1;
parent[next_node] = current_node;
node_queue.push(next_node) ;

}

return depth;
}

[/ Gin_flow: 2K ANZT AWK KE, & T A&, HINFINITY
[/ BB OERR KT\ 2
i64 dfs(size_t from_node, size_t to_node, i64 1in_flow,
std::vector<size_t> &depth) {
if ((from_node == to_node) || (in_flow == 0)) {
return in_flow;

}

/| REENZFT AN LT R E
i64 remain_flow = 1in_flow;

41

}s

for (size_t next_node : node_to_edges[from_node]) {
/] XRERT—EHT A
if (depth[next_node] == depth[from_node] + 1) {
if (residual_graph[from_node][next_node] > 0) {
/] XTHE— %44, 2P BRARAITHLH R E
i64 to_allocate_flow = std::min(
remain_flow, residual_graph[from_node][
next_node]);

EILETY LT %
i64 allocated_flow =

dfs(next_node, to_node, to_allocate_flow, depth

)3

/Il TETRECEREE, AXEWNHAREFRLAFZANA

ZTRARRE
if (allocated_flow == 0) {
depth[next_node] = 0;
}

remain_flow —-= allocated_flow;

residual_graph[from_node] [next_node] -=
allocated_flow;

residual_graph[next_node][from_node] +=
allocated_flow;

}

if (remain_flow == 0) {
break;
}
}

return (in_flow - remain_flow);

int main() {

int T = 0;
std::scanf("%d", &T);

for (int id = 0; id < T; id++) {

size_t node_count, edge_count, source_node, target_node;
std::scanf ("%zu%zu%zu%zu", &node_count, &edge_count, &
source_node,

&target_node);

std::vector<std::vector<Edge>> graph;

42

FFT

graph.resize(node_count + 1);

for (size_t i = 0; i < edge_count; i++) {
size_t from_node, to_node;
from_node = to_node = 0;
i64 weight = 0;

std::scanf ("%zu%zu%lld", &from_node, &to_node, &weight);

graph[from_node] .emplace_back(to_node, weight);
+

Dinic dinic{graph};

std::printf("%Llld\n", dinic.max_flow(source_node, target_node))

b

#include <cmath>

#include <complex>
#include <cstdio>
#include <vector>

double const PI = std::acos(-1);

using Complex = std::complex<double>; // STL complex
constexpr dint MAX_N = 1 << 20;

int rev[MAX_N];

void change(Complex y[], int len);
void fft(Complex y[], int len, 1int on);

int main(void) {
std::vector<double> v{1, 1, -1, 2, 1, 0, -1, 1};
std::vector<Complex> cv;
cv.resize(v.size());

for (size_t i = 0; i < v.size(); i++) {
cv[il.real(v[il);
cv[i].imag(0);

}

fft(cv.data(), cv.size(), 1);

43

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76

for (size_t i = 0; i < v.size(); i++) {

std::iprintf("%.5f + %.5fi\n", cv[i]l.real(), cv[i].imag());

}
}

/] EHEEERIE len 2 2 &
// 8 rev[i] ¥ i BM#EHE
void change(Complex y[], int len) {
for (int i = 0; i < len; ++i) {
rev[i] = rev[i >> 1] >> 1;
if (1&1) {// wx&F—fE 1, WHHER len/2
rev[i] [= len >> 1;
}
}
for (int i = 0; i < len; ++i) {
if (i < rev[i]) { // RiIEEXXH R EE — K
swap(y[i], y[rev[ill);
}
}

return;

3

/*
* i FFT
* len &/ & 2k R
* on == 1 W & DFT, on == -1 i 2 IDFT
*/
void fft(Complex y[], int len, dint on) {
/] L r E#®
change(y, len);

/[l BERe# R, —FF e, AKEN-—2HEAKEANZ, —HEAHEHKEHN

len,
for (int h = 2; h <= len; h <<= 1) {
[/ wn: SR EAEREEF: wri_h

Complex wn(cos(2 * PI / h), sin(on * 2 x PI / h));

/] &3, 3 len / h %

for (int j = 0; j < len; j += h) {

/[l HHEYWMBMLER, —FHE 1 =wo_n, ZFENU wn X4 AR
% 3

// wAl_n

/] ...

Complex w(l, 0);

for (int k = j; k < j + h / 2; k++) {
/] M LA AW R T A R

Complex u = y[k];
Complex t = w * y[k + h / 2];
/] Xt EEFH LS 28 M E R LR

y[k] = u + t;
y[k + h / 2] = u - t;
/] E¥A [step)] wHew—=fm [7F]

OB R A R &K

44

[/ Ta Bl bW ri—BE T#HEXR], #%8EFHRMR

4
[/ =N BHEREEFTEXANA KRG FTHE*E

W = w * wn;

}
}
}
/] wmFEZ IDFT, CWHEEENE —PMTELFREETE A %,
¥ E len.
if (on == -1) {
for (int i = 0; i < len; i++) {
y[i].real(y[i].real() / len);
y[i]l.imag(y[i]l.imag() / len);
}
}
}
ZmMAFE

#include <algorithm>
#include <cmath>
#include <complex>
#include <cstdio>
#include <vector>

#define EPS le-6

typedef double number;
typedef long long 1i64;

double const PI = std::acos(-1);

using Complex = std::complex<number>; // STL complex
void change(Complex y[], int len);
void fft(Complex y[], int len, 1int on);

class Multiplier {
private:
std::vector<Complex> a_coff_list;
std::vector<Complex> b_coff_list;
size_t a_len;
size_t b_len;
size_t input_len;

public:
explicit Multiplier(std::vector<number> const &a_list,
std: :vector<number> const &b_Tlist) {
input_len = std::max(a_list.size(), b_list.size());
size_t len = nextPowerOfTwo(2 * 1input_len);

45

}

a_len = a_list.size();
b_list.size();

(on
—
D
=)
1

a_coff_list.resize(len);
b_coff_list.resize(len);

for (size_t i = 0; i < a_list.size(); i++) {
a_coff_list[i].real(a_list[i]);
}

for (size_t i = 0; i < b_list.size(); i++) {
b_coff_Tlist[i].real(b_list[i]);
+

// can only be called once!!!
std::vector<number> multiply() {

}

fft(a_coff_list, false);
fft(b_coff_list, false);

std::vector<Complex> c_coff_list;
c_coff_Tlist.resize(a_coff_list.size());

std::transform(std: :begin(a_coff_1list), std::end(a_coff_list),
std::begin(b_coff_list), std::begin(c_coff_list)

3
[J(Complex a, Complex b) { return a x b; });
fft(c_coff_list, true);

std: :vector<number> result;
result.resize(a_len + b_len - 1);

std::transform(std: :begin(c_coff_1list),
std::begin(c_coff_list) + (long)(a_len + b_len -
1),
std::begin(result), [](Complex a) { return a.
real(); 1);

return result;

private:

size_t nextPowerOfTwo(size_t input) {

if (input == 0) {
return 1;

}

input--;

46

}

input |= (input >> 1);
input |= (input >> 2);
input |= (input >> 4);
input |= (input >> 8);
input |= (input >> 16);
input |= (input >> 32);

return (input + 1);

/] EBEFERIE len 2 2 B F
// & rev[il X i BM#¥%EmE
void change(std::vector<Complex> &y) {

std::vector<size_t> rev;
size_t len = y.size();
rev.resize(len, 0);

for (size_t i = 0; i < len; ++i) {
rev[i] = rev[i >> 1] >> 1;
if (1&1){// wxXkmxE—fxE 1, WHM
rev[i] |= len >> 1;

B

£ i, len/2

An-

}
}
for (size_t i = 0; i < len; ++i) {
if (i <revlil) { // RIEFEXHRABE — K
std::swap(y[i], y[rev[il]l);

}
}
return;
}
/*
* f FFT
x len & 27k B =R
*x reverse == false H &£ DFT, reverse == true i & IDFT

void fft(std::vector<Complex> &y, bool reverse) {

size_t len = y.size();
/])7 E#®
change(y);

int on = 1;
if (reverse) {

on = -1;

}

/] EW AR, —FhE, ANKEX—GHBEKENZ, —HEEHEK
B H

// len.

47

129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145

146

147
148
149
150
151
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

% E

for (size_t h = 2; h <= len; h <<= 1) {
[/ wn: %R B Z AR A E R wrl_h
Complex wn(cos(2 * PI / (double)h), sin(on * 2 x PI / (
double)h));
// &, ¥ len / h K.
for (size_t j = 0; j < len; j += h) {
/] "HEYWMELER, —FHRE 1 =wo_n, ZFENU wn
/] A FE#EHB: whl_n
/] ...
Complex w(l, 0);
for (size_t k = j; k < j + h / 2; k++t) {
/] =AM R AN E T F A R
Complex u = y[k];
Complex t = w * y[k + h / 2];
/] ZRAELFH > BWE R MAR
y[k] = u + t;
ylk + h / 2] = u - t;
//)31;4 [step] FHo—EMm [FAN] FH KM
K 3
// Hl?;; bR — B [#ER], #%3FEEFH%K
AR 2
[l — M MNEHEREHFFEXANARE TN F IS
W = w * wn;
}
}
}
// wmFEZ IDFT, e EENE - MTELARZR T E BE %,
// len.
if (on == -1) {
for (size_t i = 0; i < len; i++) {
y[i]l.real(y[i].real() / (double)len);
}
}
}
15
int main(void) {

size_t a_len 03
size_t b_len = 0;
std::scanf("%zu%zu", &a_len, &b_len);

a_lent+;
b_len++;

std::vector<number> a_list;
std::vector<number> b_1l1ist;
a_list.reserve(a_len);
b_list.reserve(b_len);

for (size_t i = 0; i < a_len; i++) {

48

double -input = 0;
std::iscanf("%1lf", &input);
a_list.push_back(input);

for (size_t i = 0; i < b_len; i++) {
double input = 0;
std::scanf ("%Lf", &input);
b_Tlist.push_back(input);

}

Multiplier mul{a_list, b_list};

std::vector<number> result = mul.multiply();

for (size_t i = 0; i < result.size(); i++) {
std::printf("%lld ", (i64)(result[i] + 0.5));

}

std::putchar('\n');

return 0;

KEBHFRE

#include <algorithm>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstring>
#include <vector>

#define BUFFER_LEN 1000005
#define EPS le-6

typedef double number;
typedef long long i64;

double const PI = std::acos(-1);

char buffer[BUFFER_LEN] = {0};

using Complex = std::complex<number>; // STL complex
void change(Complex y[], int len);

void fft(Complex y[], int len, 1int on);

std::vector<number> get_big_int();

class Multiplier {

49

private:
std::vector<Complex> a_coff_list;
std::vector<Complex> b_coff_list;
size_t a_len;
size_t b_len;
size_t dinput_len;

public:
explicit Multiplier(std::vector<number> const &a_list,
std::vector<number> const &b_T1list) {
input_len = std::max(a_list.size(), b_list.size());
size_t len = nextPowerOfTwo(2 * +input_len);

a_len = a_list.size();
b_len b_Tlist.size();

a_coff_list.resize(len);
b_coff_list.resize(len);

for (size_t i = 0; i < a_list.size(); i++) {
a_coff_list[i].real(a_list[i]);
}

for (size_t i = 0; i < b_list.size(); i++) {
b_coff_list[i].real(b_list[i]);
}
}

// can only be called once!!l!
std::vector<number> multiply() {
fft(a_coff_list, false);
fft(b_coff_list, false);

std::vector<Complex> c_coff_list;
c_coff_Tlist.resize(a_coff_list.size());

std::transform(std: :begin(a_coff_1list), std::end(a_coff_list),
std::begin(b_coff_list), std::begin(c_coff_list)

)
[J(Complex a, Complex b) { return a x b; });
fft(c_coff_list, true);

std: :vector<number> result;
result.resize(a_len + b_len - 1);

std::transform(std: :begin(c_coff_1list),
std::begin(c_coff_list) + (long)(a_len + b_len -
1),
std::begin(result), [](Complex a) { return a.
real(); 1);

50

return result;

}

private:
size_t nextPowerOfTwo(size_t 1input) {
if (input == 0) {

return 1;
}
input-—;
input |= (input >> 1);
input |= (input >> 2);

|
|
input |= (input >> 4);
|
|
|

input |= (input >> 8);
input |= (input >> 16);
input |= (input >> 32);

return (input + 1);

}

/] ABEFEERIEE len £ 2 B F

// 8 rev[i]l X 1 BMEEWHE

void change(std::vector<Complex> &y) {
std::vector<size_t> rev;
size_t len = y.size();
rev.resize(len, 0);

for (size_t i = 0; i < len; ++i) {
rev[i] = rev[i >> 1] >> 1;
if (&1) {// mR&EFE—f&E 1, WA K len/2
rev[i] |= len >> 1;
}
}
for (size_t i = 0; i < len; ++i) {
if (3 <rev[il) { // RIEFTHATE — K
std::swap(y[i], y[rev[ill);

}
}
return;
}
/*
x f FFT
x len & 2k B =R
x reverse == false H & DFT, reverse == true K & IDFT
*
/

void fft(std::vector<Complex> &y, bool reverse) {
size_t len = y.size();

123
124
125
126
127
128
129
130
131
132

133
134
135
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168

/] 5 E %
change(y);
int on = 1;
if (reverse) {
on = -1;
}
/] B eHIR, e, KKEA—EHEKEANZ, —HEeiE K
// len,
for (size_t h = 2; h <= len; h <<= 1) {
// wn: Y RTEAEZARMERK: whl_h
Complex wn(cos(2 * PI / (double)h), sin(on *x 2 *x PI / (
double)h));
// &3, # len / h %K.
for (size_t j = 0; j < len; j += h) {
[/ AEYWELER, —FHRE 1 =wo_n, ZFZNU wn
/] A& whl_n
/] ...
Complex w(l, 0);
for (size_t k = j; k < j + h / 2; k++) {
/] Z A A0 & MR T A
Complex u = y[k];
Complex t = w * y[k + h / 2];
/] ZREEFIH L E0NE R LR
y[k]l] = u + t;
ylk + h / 2] = u - t;
//)éi;ﬁ [step] WHo—EA TaFAN] &8 KH
K 3
/[l TaBE] FWE%— %8 [#%Ex], %+ 8EHFHK
R %
[— M EHEREEFFERAN s FIHE
W = w * wn;
}
}
}
[/ R E IDFT, v M EEHE - IMNTELARERTERE &, £ F
// len.
if (on == -1) {
for (size_t i = 0; i < len; i++) {
y[i].real(y[i].real() / (double)len);
}
}
}
}s
int main(void) {

std::vector<number> a_digit_list = get_big_int();

52

std:

std::vector<number> b_digit_list = get_big_int();
Multiplier mul{a_digit_1list, b_digit_list};
std::vector<number> temp = mul.multiply();

std::vector<int> result;
result.resize(2 * temp.size(), 0);

int carry = 0;

for (size_t i = 0; i < temp.size(); i++) {
int current_digit = (int) (temp[i] + 0.5);

current_digit += carry;
result[i] = current_digit % 10;

carry = current_digit / 10;

}

size_t result_len = 0;

for (size_t i = temp.size(); i < result.size(); i++) {

int current_digit = carry;

result[i] = current_digit % 10;
carry = current_digit / 10;

if (carry == 0 && result[i] == 0) {

result_len = 1i;
break;

}

for (size_t i = 0; i < result_len; i++) {
std::putchar(result[result_len - i - 1] + '0');
}

std::putchar('\n');

return 0;

:vector<number> get_big_int() {
std::vector<number> result;
std::scanf("%s", buffer);

size_t num_len = std::strlen(buffer);

result.resize(num_len, 0);

53

for

}

retu

#include
#include
#include
#include
#include

struct B

(size_t i = 0; i
result[num_len -

rn result;

<algorithm>
<cctype>
<cstdio>
<string>
<vector>

igInt {

< num_len; i++) {
i - 1] = (number) (buffer[i]

std::vector<int> digits;

size

_t len;

explicit BigInt(size_t capacity) {

+s

digits.resize(ca
len = 1;

pacity, 0);

explicit BigInt(size_t capacity, long long from) {

}

explicit BigInt(size_t capacity, std::string const &from) {

digits.resize(ca
size_t i = 0;

while (from > 0)

digits[i] =
from /= 10;
i+t

}

len = 1;

if (len == 0) {
len = 1;
+

size_t valid_len

for (size_t i

pacity, 0);

{
(int) (from % 10);

= from.size();

= 0; i < from.size(); i++) {

0');

54

}

if (!std::disalnum(from[i])) {
valid_len = 1;
break;

}
digits.resize(capacity, 0);

for (size_t i = 0; i < valid_len; i++) {
digits[i] = from[from.size() - i - 1] - '0';

}
len = valid_len;
if (len == 0) {

len = 1;
+

friend BigInt operator+(BigInt const &left, BigInt const &right) {
BigInt result{std::max(left.digits.size(), right.digits.size())

}3
size_t new_len = 0;

if (left.len > right.len) {
std::copy_n(std::begin(left.digits), left.len,
std::begin(result.digits));
for (size_t i = 0; i < right.len; i++) {
result.digits[i] += right.digits[i];
}

new_len = left.len;
} else {
std::copy_n(std::begin(right.digits), right.len,
std::begin(result.digits));

for (size_t i = 0; i < left.len; i++) {
result.digits[i] += left.digits[i];
}

new_len = right.len;

int carry = 0;

for (size_t i = 0; i < result.digits.size(); i++) {
result.digits[i] += carry;
carry = result.digits[i] / 10;
result.digits[i] %= 10;

if (i >= new_len && carry == 0 && result.digits[i] == 0)

55

new_len = 1i;
break;

}

result.len = new_len;

if (result.len == 0) {
result.len = 1;

}

return result;

}

friend BigInt operator-(BigInt const &left, BigInt const &right)

BigInt result{left.digits.capacity()};

std::copy_n(std::begin(left.digits), left.len,
std::begin(result.digits));

for (size_t i = 0; i < left.len; i++) {
result.digits[i] -= right.digits[i];
}

int borrow = 0;

for (size_t i = 0; i < left.len; i++) {
result.digits[i] —-= borrow;

if (result.digits[i] < 0) {
borrow = -result.digits[i] / 10 + 1;
result.digits[i] += borrow * 10;

for (size_t i = 0; i < left.len; i++) {
size_t idx = (left.len - i - 1);

if (result.digits[i] != 0) {

result.len = idx + 1;
break;

}

if (result.len == 0) {
result.len = 1;

}

return result;

}

friend BigInt operator*(BigInt const &left, BigInt

const &right)

56

}s

std:

BigInt result{std::max(left.digits.size(), right.digits.size())
s

for (size_t i1 = 0; i < left.len; i++) {
for (size_t j = 0; j < right.len; j++) {
result.digits[i + j] += left.digits[i] * right.digits[j
13

}

int carry = 0;

for (size_t i = 0; i < result.digits.size(); i++) {
result.digits[i] += carry;
carry = result.digits[i] / 10;
result.digits[i] %= 10;

+

result.len = 1;

for (size_t i = 0; i < (left.len + right.len + 1); 1i++) {
size_t idx = left.len + right.len - 1i;

if (result.digits[idx] != 0) {

result.len = idx + 1;
break;

}

return result;

:string to_string() {

std::string s;

s.resize(len, '0');

for (size_t i = 0; i < len; i++) {

s[len - i - 1] = (char)digits[i] + '0';
}

return s;

int main(void) {
long long a, b;

a =

std:

b = e

:scanf ("%lld%1lld", &a, &b);

BigInt b_a{1000, a};

57

GCD

BigInt b_b{1000, b};

std::printf("a + b:
std::printf("a - b:
* b:

std::printf("a

return 0;

#include <cstdlib>
#include <tuple>
#include <utility>

typedef {int number;

%s\n",
%s\n",
%s\n",

(b_a + b_b)
(b_a - b_b)
(b_a * b_b)

number gcd(number a, number b) {

a = std::abs(a);

b = std::abs(b);

if (a < b) {
std::swap(a, b);

}

while (b > 0) {
number temp =
b =a % b;
a temp;

}

return a;

}

// d = gcd(a, b) = ax
struct EEResult {
number d;
number x;
number y;

+s

EEResult exgcd(number
a std::abs(a);
b std::abs(b);

number x = 1, y =

number x1 = 0, yl
while (bl > 0) {
number q = al

bj

+ by

a, number b) {

.to_string().data()
.to_string().data()
.to_string() .data()

)
)
)

.
b
.
b
.

b

58

std::tie(x, x1) = std::make_tuple(xl, x - q * x1);
std::make_tuple(yl, v - q * yl);
std::tie(al, bl) = std::make_tuple(bl, al - q * bl);

std::tie(y, yl)

}

return EEResult{al, x, y};

ZMHRAKRARE

#include <cstdlib>
#include <tuple>

typedef {int number;

// d = gcd(a, b) = ax
struct EEResult {
number d;
number x;
number y;

15

EEResult exgcd(number
a = std::abs(a);
b = std::abs(b);

number x = 1, y =
number x1 = 0, yl

while (bl > 0) {
number q = al

std::tie(x, x1) = std::make_tuple(xl, x - q * x1);
std::tie(y, yl) = std::make_tuple(yl, vy - q * yl);
std::tie(al, bl) = std::make_tuple(bl, al - q * bl);

}

+ by

a, number b) {

/ bl;

return EEResult{al, x, y};

}

// x_1 = x_0 + i % (n

/ d), d

// Solve ax = b (mod n) for x_0
|

// solvable if and only +if: d

struct MLEResult {
bool solvable;
number x0;

i

gcd(a, n)
b

MLEResult modular_linear_equation_solver (number a, number b, number n)

{

EEResult r = exgcd(a, n);

59

number d = r.d;

if (b % d == 0) {

return MLEResult{true, ((r.x * b / d) + n) % n};
} else {

return MLEResult{false, 0};

}

ETRER

typedef long long number;

// a ™ b mod n

number modular_exponentitaion(number a, number b, number n) {
number result = 1;
number temp = a % n;

while (b > 0) {
number current_digit = % 2

if (current_digit == 1) {
result = (result * temp) % n;

+
temp = (temp * temp) % n;

b /= 2;
}

return result;

CRT

#include <cstdlib>
#include <functional>
#include <numer-ic>
#include <tuple>
#include <vector>

typedef long long number;
// d = gcd(a, b) = ax + by

struct EEResult {
number d;

number x;
number y;

}s

EEResult exgcd(number a, number b) {
number x = 1, y = 0;

number x1 = 0, yl =1, al = a, bl = b;

while (bl > 0) {
number q = al / bl;
std::tie(x, x1) = std::make_tuple(xl, x - q * x1);
std::tie(y, yl) = std::make_tuple(yl, vy - q * yl);
std::tie(al, bl) = std::make_tuple(bl, al - g * bl);

}
return EEResult{al, x, y};
}
// Solve ax = b (mod n) for x_0
// x_i =x_0+1ix (n/ d), d= gcd(a, n)
// solvable if and only if: d | b

struct MLEResult {
bool solvable;
number x0;

}s

MLEResult modular_linear_equation_solver (number a, number b, number n)

{
EEResult r = exgcd(a, n);

number d = r.d;

if (b % d == 0) {
return MLEResult{true, ((r.x * b / d) + n) % n};
} else {
return MLEResult{false, 0};
}
}

// n =n_1n_2...n_k
// a = (a_lc_1 + a_2c_2 + ... + a_nc_n) mod n
struct CRTResult {

number a;

number n;

}s

// n_1, n_2, ..., n_k are pairwise relative prime

/] KR&FR4AE: x = a_i (mod n_i)# @: x = a (mod n)

CRTResult crt(std::vector<number> const &a_list,
std::vector<number> const &n_Tlist) {

number n = std::accumulate(std::begin(n_list), std::end(n_list), 1

61

LL,
std: :multiplies<number>{});

number result = 0;

for (size_t i 0; i < n_list.size(); i++) {
number n_i = n_Tlist[i];
number m_i = n / n_i;

MLEResult r = modular_linear_equation_solver(m_i, 1, n_1i);
number c_i = (r.x0 % n * m_i % n) % n;

result = (result + (a_list[i] * c_i) % n) % n;

}
return CRTResult{result, n};
}
FrERTE
KMP

#include <string>
#include <vector>

#define MAX_STR_LEN 305
#define ALPHABET_LEN 30

/] WAqRTILE Y patternth fiqi F4&
class KMPMatcher {
public:
std::string pattern;
std::vector<size_t> pi;

explicit KMPMatcher(std::string const &pattern) {
this->pattern = pattern;

generate_pi();

}

void generate_pi() {
pi.resize(pattern.size() + 1, 0);

size_t q = 0;
for (size_t i = 1; i < pattern.size(); i++) {

while (q > 0 && pattern[i] != pattern[q]) {
q = pilal;

62

}

if (pattern[i] == pattern[q]) {
qt+;

}
pili + 1] = q;
}

// O(N \sigma)
// verdict: E6 D
void generate_FA_transition_table(size_t delta[MAX_STR_LEN][
ALPHABET_LEN]) {
for (size_t 1 = 0; 1 < pi.size(); 1++) {
for (size_t next_ch = 'a'; next_ch <= 'z'; next_ch++) {
size_t q = 1;
while ((q > 0) && ((char)next_ch != pattern[q])) {
q = pilql;
}

if ((char)next_ch == pattern[q]) {
delta[l][next_ch - 'a'] = q + 1;
} else {
delta[l][next_ch - 'a'l = q;
}

}

std::vector<size_t> match(std::string const &to_match) {
std::vector<size_t> matched_pos_1list;

size_t q = 0;

for (size_t i = 0; i < to_match.size(); i++) {
while (q > 0 && to_match[i] != pattern[q]) {

q = pilal;

}

/] 0 TH, REAEWIQNFHABFERLT, T—IMRERHFHFE
pattern[q]

if (to_match[i] == pattern[q]) {
q++;

}

if (q == pattern.size()) {
matched_pos_Tlist.push_back(i + 1 - pattern.size());

q = pilq]l;

63

return matched_pos_1list;
+s

int main(void) {
std::string pattern{"ababaca"};

KMPMatcher matcher{pattern};

return 0;

HEILE

#include <algorithm>
#include <cmath>
#include <vector>

#define MY_INFINITY (1LL << 60)
typedef long long number;
class Point {

public:

number x;
number y;

explicit constexpr Point(number a, number b) : x{a}, y{b} {};

friend Point operator-(Point const &left, Point const &right) {
return Point{left.x - right.x, left.y - right.y};
}

friend bool operator==(Point const &left, Point const &right) {
return (left.x == right.x) && (left.y == right.y);
}
}s

struct PointHash {
std::size_t operator() (Point const &k) const noexcept {
size_t right = (size_t)k.y;
right += 0x9e3779b97f4a7cl5;

right = ((right << 31) | (right >> (64 - 31)));

return ((size_t)k.x » right);

64

+s

class Vector {

}s

public:

number x;
number y;

explicit constexpr Vector(number a, number b) : x{a}, y{b} {};
explicit constexpr Vector(Point const &point) : x{point.x}, y{point
-y} {};
explicit constexpr Vector(Point const &from, Point const &to)
x{to.x - from.x}, y{to.y - from.y} {};

friend Vector operator+(Vector const &left, Vector const &right) {
return Vector{left.x + right.x, left.y + right.y};
}

friend Vector operator-(Vector const &left, Vector const &right) {
return Vector{left.x - right.x, left.y - right.y};

}

friend Vector operator-(Vector const &self) {
return Vector{-self.x, -self.y};

}

friend number operatorx*(Vector const &left, Vector const &right) {
return left.x * right.x + left.y * right.y;

}

friend number operator”(Vector const &left, Vector const &right) {
return left.x * right.y - right.x * left.y;
}

double module() const {
return std::sqrt(this->x * this->x + this->y * this->y);
}

class Segment {

public:

Point from;
Point to;

explicit constexpr Segment(Point a, Point b) : from{a}, to{b} {};

Vector direction() const { return Vector{to.x - from.x, to.y - from

-Vl 3
Segment reversed() const { return Segment{to, from}; }

bool on_segment(Point p) const {

65

Vector d = this->direction();
Vector d2 = Vector{p - this->from};

if ((d » d2) == 0) {
if (p.x >= std::min(from.x, to.x) &&
p.x <= std::max(from.x, to.x) &&
p.y >= std::min(from.y, to.y) &&
p.y <= std::max(from.y, to.y)) {
return true;

}

return false;

}

bool intersect(Segment const &s) const {
Vector this_direction = this->direction();
Vector s_direction = s.direction();

Vector dl1 Vector{s.from - this->from};
Vector d2 = Vector{s.from - this->to};
Vector d3 = Vector{this->from - s.from};
Vector d4 Vector{this->from - s.to};

number prol s_direction A di;
number pro2 = s_direction * d2;
number pro3 this_direction * d3;
number pro4 this_direction * d4;

if (((prol > O && pro2 < Q) || (prol < 0 && pro2 > 0)) &&
((pro3 > 0 && pro4 < 0) || (pro3 < 0 && pro4 > 0))) {
return true;

}

if (prol == 0 && s.on_segment(this->from)) {
return true;

}

if (pro2 == 0 && s.on_segment(this->to)) {
return true;

}

if (pro3 == 0 && on_segment(s.from)) {
return true;

}

if (pro4 == 0 && on_segment(s.to)) {
return true;

}

return false;
}s

/] %R AT
bool operator<(Point const &left, Point const &right) {
number cross_product = Vector{left} A Vector { right };
if (cross_product > 0) {
return true;
} else 1if (cross_product == 0) {
if (left.x > right.x) {
return false;
} else if (left.x < right.x) {
return true;
} else {
if (left.y > right.y) {
return false;
} else {
return true;
}
+
} else {
return false;
h;
}

/] % & xrpoint_listah A7 #l 4 #

/] BEX: FBAEL K

std::vector<Point> convex_hull(std::vector<Point> point_Llist) {
number min_y MY_INFINITY;
number min_x = MY_INFINITY;
auto origin_element = std::begin(point_list);

for (Point const &point : point_list) {
if (point.y < min_y) {
min_y = point.y;
}
}

for (auto iter = std::begin(point_list); iter != std::end(
point_list);
iter++) {
if (iter->y == min_y) {
if (iter->x < min_x) {
min_x = iter->x;
origin_element = -iter;

}

for (Point &point : point_list) {

point.x -= min_x;
point.y —-= min_y;

}

point_Llist.erase(origin_element);

std::sort(std::begin(point_list), std::end(point_1list));
std::vector<Point> stack;

stack.reserve(point_list.size());

stack.emplace_back(0, 0);
stack.push_back(point_list[0]);
stack.push_back(point_list[1]);

for (size_t i = 2; i < point_list.size(); i++) {
while (true) {
Point const ¤t_top = stack.back();

Point const ¤t_next_to_top = stack[stack.size() - 2];

Vector vl = Vector{current_next_to_top, current_top};
Vector v2 = Vector{current_next_to_top, point_1list[i]};

if ((vi A v2) > 0) {
break;

}

stack.pop_back();

if (stack.size() <= 1) {
break;
}
+

stack.push_back(point_list[i]);
}

return stack;

}

/] KAK (FH&BE, WH2x& B K E)
double length(std::vector<Point> const &convex_hull_list) {
double result = 0.0;

size_t len = convex_hull_list.size();
for (size_t i = 0; i < lenj i++) {
Point const &pl = convex_hull_1list[i];
Point const &p2 convex_hull_1list[(i + 1) % len];

Vector v{pl, p2};

result += v.module();

68

}

return result;

}

/] k2 HEHR (EE2 x TMH)

/] E & # 4 Hdoublefr N2 7 i A & o] A !

number doubled_polygon_area(std::vector<Point> const &
sorted_convex_list) {
Point const &aux_ponint = xstd::begin(sorted_convex_list);

number doubled_area = 0;
size_t len = sorted_convex_list.size();
for (size_t i = 0; i < len; i++) {
Vector vl{aux_ponint, sorted_convex_Llist[i]};

Vector v2{aux_ponint, sorted_convex_Llist[(i + 1) % len]};

doubled_area += (vl * v2);

}
return std::abs(doubled_area);
}
Random
shuffle

#include <algorithm>

#include <random>

// 32 bit mersenne twister engine

auto const seed = std::random_device{}();

auto reng = std::mt19937{seed};

std::vector<int> v {0,1,2,3,4,5,6,7,8};
shuffle(begin(v)+2, begin(v)+7, reng);

for (int x : v) { cout << x <<'" '3 } // O 1 - 7 8

HhsH

#include <random>

// fixed seed

auto const seed = 123;

// Mersenne Twister random engine:
std::mt19937 urbg {seed};

// generate random ints ® [1,6]

69

o

11
12

std::uniform_int_distribution<int> distrli {1, 6};

auto const valuel = distrl(urbg);

auto const value2 = distrl(urbg);

// generate random floats KW [-1.2,6.25)
std::uniform_real_distribution<float> distr2 {-1.2f, 6.25f};
auto const value3 = distr2(urbg);

70

	Template
	单调队列
	大顶堆
	排序
	归并排序
	堆排序
	快速排序

	哈希
	C++自定义哈希函数

	最长不增子序列
	并查集
	最近公共祖先
	图
	DFS
	拓扑排序
	DFS 拓扑排序
	DFS 强连通分量
	最小生成树
	最短路
	最大流

	FFT
	多项式乘法
	大整数乘法

	数论
	高精度
	GCD
	线性同余方程
	模下快速幂
	CRT

	字符串匹配
	KMP

	计算几何
	Random
	shuffle
	均匀分布

