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Template

EESE

1 2 3 4 5
le6 1000003 1000033 1000037 1000621 1000621
1le9 1000000007 1000000009 1000000021 1000000993 1000001011
1le9 1000000007 1000000009 1000000021 1000000993 1000001011

lel4 100000000000031 100000000000067 100000000000097 100000000001623 100000000001647

B RS

#include <cstdio>
#include <deque>
#include <vector>

class MonotoneQueue {
private:
struct QueuelItem {
int data;
size_t 1dx;

explicit constexpr Queueltem(int data_, size_t didx_)
¢ data{data_}, idx{idx_} {};
}3

std: :deque<Queueltem> queue;
size_t window_length;
bool increasing;

size_t idx;

public:
explicit MonotoneQueue(size_t window_length_, bool increasing_)
: window_length{window_length_}, increasing{increasing_}, 1idx

{o} {1

void put(int data) {
idx++;

while (!queue.empty() && (idx - queue.front().idx) >=
window_Tlength) {
queue.pop_front();




}

if (dincreasing) {
while (!queue.empty() && queue.back().data > data) {
queue.pop_back();
}
} else {
while (!queue.empty() && queue.back().data < data) {
queue.pop_back();
}
+

queue.emplace_back(data, idx);

}

int get() const { return queue.front().data; }
}s5

int main(void) {
size_t n, k;
n==%k= 0;

std::scanf ("%zu%zu", &n, &k);

std::vector<int> input_list;
input_list.reserve(n);

for (size_t i = 0; i < nj; i++) {
int data = 0;
std::scanf("%d", &data);
input_list.push_back(data);
}

MonotoneQueue min_queue{k, true};
MonotoneQueue max_queue{k, false};

for (size_t i = 0; i < nj i++) {
min_queue.put(input_1list[i]);

if (i >= (k - 1)) {
std::printf("%d ", min_queue.get());
+
}

std::putchar('\n');

for (size_t i = 0; i < n; i++) {
max_queue.put(input_1list[i]);

if (i >= (k - 1)) {
std::printf("%d ", max_queue.get());




}
std::putchar('\n');

return 0;

KTt

#include <utility>
#include <vector>

typedef long long i64;

class Heap {
public:
std::vector<i6e4> heap;
size_t heap_size;

explicit Heap() { heap_size = 0; }
explicit Heap(std::vector<i64> const &num_Tlist) {
heap = num_Tlist;
heap_size = num_list.size();
if (num_list.size() >= 2) {
size_t idx = num_list.size() / 2 - 1;
for (size_t i = 0; i <= num_list.size() / 2 - 1; i++) {

max_heapify(idx);

idx--3

}
public:
i64 heap_maximum() { return heap[0]; }
164 heap_extract_max() {
i64 max_value = heap[0];
heap[0] = heap[heap_size - 1];
max_heapify(0);

heap_size--;
return max_value;




s

void heap_increase_key(size_t i, 164 new_key) {
heap[i] = new_key;

while (i >= 1 && heap[parent(i)] < heap[i]) {
std: :swap(heap[parent(i)], heap[i]);

i = parent(i);
}

void heap_insert(i64 key) {
heap.push_back(0);

heap_increase_key(heap_size - 1, key);
heap_size++;

}

private:
inline size_t left(size_t i) { return 2 *x i + 1; }

inline size_t right(size_t i) { return 2 * i + 2; }
inline size_t parent(size_t i) { return (i - 1) / 2; }

void max_heapify(size_t i) {
while (1) {
size_t left_idx = left(i);
size_t right_idx = right(i);

size_t largest_idx = 1;

if (left_idx < heap_size && heap[left_idx] > heap[i]) {
largest_idx = left_idx;
}

if (right_idx < heap_size && heap[right_idx] > heap[
largest_idx]) {
largest_idx = right_idx;

}

if (largest_idx != i) {
std::swap(heap[i], heap[largest_idx]);

i = largest_1idx;
} else {
break;

}




HEFF
IAFHHERF

#include <algorithm>
#include <cstdio>
#include <vector>

typedef long long i64;

void merge(std::vector<i64> &arr, size_t p, size_t q, size_t r);
void do_merge_sort(std::vector<i64> &arr, size_t p, size_t r);
void merge_sort(std::vector<i64> &arr);

int main(void) {

}

size_t n = 0;
std::scanf ("%zu", &n);

std::vector<i64> num_list;
num_Llist.reserve(n);

for (size_t i1 0; 1 < nj di++) {

i64 num 0;
std::scanf("%lld", &num);
num_T1list.push_back(num);

}

merge_sort(num_list);

for (i64 num : num_list) {
std::printf("%lld ", num);

h;

std::putchar('\n');

return 0;

// merge sorted [p, q] and [q + 1, r]
void merge(std::vector<i64> &arr, size_t p, size_t q, size_t r) {

std::vector<i6e4> aux;
aux.reserve(r - p + 1);

size_t i = p;
size_t j q + 1;

while ((i <= q) && (j <= r)) {
if (arr[i] <= arr[j]) {
aux.push_back(arr[i]);




T++;

} else {
aux.push_back(arr[j]1);
Jt+s

+

}

while (i <= q) {
aux.push_back(arr[i]);
it++;

}

while (j <= r) {
aux.push_back(arr[j]);
Jtts

}

std::copy(std::begin(aux), std::end(aux), std::begin(arr) + (long)p
)3
}

void do_merge_sort(std::vector<i64> &arr, size_t p, size_t r) {
if (p == r) {
return;
}

size_t g =p + (r - p) / 2;

do_merge_sort(arr, p, q);
do_merge_sort(arr, q + 1, r);

merge(arr, p, g, r);

}
void merge_sort(std::vector<i6e4> &arr) {
if (arr.empty() || arr.size() == 1) {
return;

}

do_merge_sort(arr, 0, arr.size() - 1);

HEHERF

#include <cstdio>
#include <utility>
#include <vector>

typedef long long 1i64;




class Heap {
public:
std::vector<i6e4> heap;
size_t heap_size;

explicit Heap() { heap_size = 0; }
explicit Heap(std::vector<i64> const &num_Tlist) {
heap = num_Tlist;
heap_size = num_list.size();
if (num_list.size() >= 2) {
size_t didx = num_list.size() / 2 - 1;
for (size_t i = 0; i <= num_list.size() / 2 - 1; i++) {

max_heapify(idx);

idx--3

}

public:
164 heap_maximum() { return heap[0]; }
i64 heap_extract_max() {
i64 max_value = heap[0];

heap[0] = heap[heap_size - 1];
max_heapify(0);

heap_size—--;

return max_value;

}

void heap_increase_key(size_t i, 164 new_key) {
heap[i] = new_key;

while (i >= 1 && heap[parent(i)] < heap[i]) {
std: :swap(heap[parent(i)], heap[i]);

i = parent(i);
}

void heap_insert(i64 key) {
heap.push_back(0);

heap_increase_key(heap_size - 1, key);
heap_size++;




void max_heapify(size_t i) {
while (1) {
size_t left_idx = left(i);
size_t right_idx = right(i);

size_t largest_idx = 1;

if (left_idx < heap_size && heap[left_idx] > heap[i]) {
largest_idx = left_idx;
}

if (right_idx < heap_size && heap[right_idx] > heap[
largest_idx]) {
largest_idx = right_idx;

}

if (largest_idx != 1) {
std::swap(heap[i], heap[largest_idx]);

i = largest_idx;
} else {
break;

}
}

private:
inline size_t left(size_t i) { return 2 *x i + 1; }

inline size_t right(size_t i) { return 2 * i + 2; }

inline size_t parent(size_t i) { return (i - 1) / 2; }
}s
std::vector<i64> heap_sort(std::vector<ie4> const &list);
int main(void) {

size_t n = 0;
std::scanf ("%zu", &n);

std::vector<i64> num_list;

num_Llist.reserve(n);

for (size_t i = 0; i < n; i++) {
i64 num = 0;

std::scanf("%lld", &num);
num_T1list.push_back(num);




std::vector<i64> sorted = heap_sort(num_1list);
for (i64 num : sorted) {
std::printf("%lld ", num);
}
std::putchar('\n');

return 0O;

std::vector<i64> heap_sort(std::vector<i64> const &list) {
Heap heap{list};

if (list.empty()) {
return list;

}

for (size_t i = 0; i < list.size() - 1; i++) {
std: :swap(heap.heap[0], heap.heap[list.size() - 1 - i]);

heap.heap_size--;

heap.max_heapify(0);
}

return heap.heap;

BRIE HEFF

#include <cstdio>
#include <random>
#include <vector>

typedef long long i64;
i64 partition(std::vector<i6e4> &list, i64 p, 164 r);
void do_quick_sort(std::vector<i64> &list, i64 p, 164 r);
void quick_sort(std::vector<i64> &list);
void random_permutation(std::vector<i64> &list);
int main(void) {
size_t n = 0;
std::scanf("%zu", &n);

std::vector<i64> num_list;

num_Llist.reserve(n);

10



for (size_t i = 0; i < n; i++) {
i64 num = 0;
std::scanf("%1ld", &num);
num_T1list.push_back(num);

}

quick_sort(num_1list);

for (i64 num : num_list) {
std::printf("%lld ", num);

+

std::putchar('\n');

return 0;

}

// partition range [p, r]
i64 partition(std::vector<i6e4> &list, i64 p, i64 r) {
i64 pivot = list[(size_t)r];

i64 i = p - 1;
for (964 j = p; j <= r - 1; j++) {
if (list[(size_t)j] <= pivot) {
i+t
std::swap(list[(size_t)i], list[(size_t)jl);
}

std::swap(list[(size_t)i + 1], list[(size_t)r]);

return i + 1;

}

void do_quick_sort(std::vector<i64> &list, 164 p, i64 r) {

if (p < r) {
i64 q = partition(list, p, r);

do_quick_sort(list, p, q - 1);
do_quick_sort(list, q + 1, r);

}

void quick_sort(std::vector<i64> &list) {
if (list.empty()) {
return;

}

random_permutation(list);

11



do_quick_sort(list, 0, (i64)(list.size() - 1));
}

void random_permutation(std::vector<i64> &list) {
auto const seed = 84841984;

std::mt19937 urbg{seed};
for (size_t i = 0; i < list.size(); i++) {
std::uniform_int_distribution<size_t> distr{i, list.size() -
1};

std::swap(list[i], list[distr(urbg)]);

#include <stddef.h>
#include <stdint.h>
#include <string.h>

#define SIPHASH_COMPRESSION_ROUND 2
#define SIPHASH_FINALIZATION_ROUND 4

#define ROTL(x, b) (uint64_t) (((x) << (b)) | ((x) >> (64 - (b))))

uint64_t siphash(uint64_t k_0, uint64_t k_1, void *msg, size_t msg_len)

)

uint64_t siphash(uinté4_t k_0, uint64_t k_1, void *msg, size_t msg_len)

{

uinté4_t v_0 = k_0 » 0x736f6d6570736575;
uinte4_t v_1 = k_1 » 0x646f72616e646f6d;
uint64_t v_2 = k_0 " Ox6c7967656e657261;
uint64_t v_3 = k_1 » Ox7465646279746573;

size_t normal_count = msg_len / 8;
uint64_t *current_word_ptr = (uint64_t *)msg;

for (size_t i = 0; i < normal_count; i++) {
uint64_t current_word = *current_word_ptr;

v_3 7= current_word;

for (int j = 0; j < SIPHASH_COMPRESSION_ROUND; j++) {
// SipRound
{

12
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ROTL(v_2,

v_0 7= current_word;

current_word_ptr++;

}

uint64_t final_word = 0;

13);
16);

32);

17);
21);

32);

memcpy (&final_word, current_word_ptr, msg_len - normal_count * 8);

final_word |= (msg_len % 256) << 56;

v_3 A= final_word;

for (int j = 0; j < SIPHASH_COMPRESSION_ROUND; j++) {

// SipRound

{

< < < <

< <
w

_0
_2

w =

+
+

v_1;
v_3;
ROTL(v_1, 13);
ROTL(v_3, 16);

v_0;
V_2;

ROTL(v_0, 32);
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+

v_1;
v_3;
ROTL(v_1, 17);
ROTL(v_3, 21);

V_2;
v_0;

ROTL(v_2, 32);

v_0 *= final_word;

v_2 A= Oxff;

for (int j =

®; j < SIPHASH_FINALIZATION_ROUND; j++) {

// SipRound

{

< <

_0
_2

< <
w

< <
w =

I<
(o]

< <
oN

w =
1

< <

+
+

v_1;
v_3;

ROTL(v_1, 13);
ROTL(v_3, 16);

v_0;
V_2;
ROTL(v_0, 32);
v_1;
v_3;

ROTL(v_1, 17);
ROTL(v_3, 21);

V_2;
v_0;

ROTL(v_2, 32);

return v_0 A v_1 A v_2 N v_3;

}
int main(void) {

uinté4_t k_0
uinte4_t k_1

Ox0706050403020100;
0x0f0e0dOcObOan908;
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uint8_t buf[15]
Ox08, Ox09, Ox0a, OxOb, Ox0c, 0x0d, Ox0e};

uint64_t result = siphash(k_0, k_1, buf, 15);
uint64_t expected = 0xal29ca6l49be45e5;

return 0O;

C+H HE LS FH R

struct TM_hash {
// 32bit integer hash by T. Mueller
constexpr std::size_t
operator () (std::uint32_t k) const noexcept {
k = ((k > 16) * k) * 0x45d9f3b;
k ((k >> 16) A k) * 0x45d9f3b;
k = ((k > 16) * k);
return k;
}
}s

std::unordered_set<std::uint32_t,TM_hash> s;

=RKFEFFI
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#include <vector>
#define MY_INFINITY (1LL << 60)

typedef long long 1i64;
i64 get_length(std::vector<i6e4> const &list, i64 left, i64 right,

val);
std::vector<i64> calc_dp(std::vector<i64> const &num_list);

std::vector<i6e4> calc_dp(std::vector<i64> const &num_list) {
std::vector<ie4> dp;
dp.resize(num_list.size(), 0);

std::vector<i64> max_last_element_by_length;

{0x00, 0x01, 0x02, Ox03, 0x04, Ox05, Ox06, Ox0O7,




max_Llast_element_by_length.resize(num_list.size() + 1, -MY_INFINITY
)

max_last_element_by_Tlength[0] MY_INFINITY;

dp[0] = 1;
max_last_element_by_length[1]

num_1ist[0];

for (size_t i = 1; i < num_list.size(); i++) {
i64 prev_max_length =
get_length(max_last_element_by_length, 1, (i64)i, num_list[
i1);

dp[i] = prev_max_length + 1;

if (max_last_element_by_length[(size_t)dp[i]l] < num_list[i]) {
max_last_element_by_length[(size_t)dp[i]] = num_list[i];
h
}

return dp;

}

i64 get_length(std::vector<i64> const &list, i64 left, 164 right, i64
val) {
while (left <= right) {
i64 mid = (left + right) / 2;

if (list[(size_t)mid] < val) {
right = mid - 1;

} else if (list[(size_t)mid] > val) {
left = mid + 1;

} else {
left = mid + 1;

}

}

return right;

HEE

#include <cstddef>
#include <numeric>
#include <vector>

using std::size_t;

struct DisjointSet {

16



std:
std:

:vector<size_t> set;
:vector<size_t> set_size;

explicit DisjointSet(size_t size) {

}

set.resize(size);
set_size.resize(size, 1);
std::iota(std::begin(set), std::end(set), 0);

size_t find(size_t x) {

}

std::vector<size_t> path(16);

while (set[x] !'= x) {
path.push_back(x);
x = set[x];

}s3

for (size_t node : path) {
set[node] = x;

}

return x;

void unite(size_t x, size_t y) {

+s

miL 2345

#include
#include
#include
#include

size_t x_root
size_t y_root

find(x);
find(y);

if (x_root == y_root) {
return;

}

if (set_size[x_root] < set_sizel[y_root]) {
set[x_root] = y_root;
set_sizel[y_root] += set_size[x_root];
} else {
set[y_root] = x_root;
set_size[x_root] += set_sizel[y_root];

<array>
<cstdio>
<utility>
<vector>

17



class LCA {
public:
std::vector<std::array<size_t, 32>> parent_info;
std::vector<size_t> node_depth;

private:
std::vector<std::vector<size_t>> const &tree;
size_t const tree_root;

public:
explicit LCA(std::vector<std::vector<size_t>> const &tree, size_t
root)
: tree{tree}, tree_root{root} {
parent_info.resize(tree.size());
node_depth.resize(tree.size());

dfs(tree_root, 0);
}

public:
size_t lca(size_t u, size_t v) {
if (node_depth[u] > node_depth[v]) {
std::swap(u, v);

}
size_t depth_delta = node_depth[v] - node_depth[u];
size_t i = 0;

while (depth_delta > 0) {
size_t digit = depth_delta & 1;
depth_delta >>= 1;

if (digit == 1) {
v = parent_info[v][i];
}

++;

}
while (u != v) {
for (i = 0; i < 32; i++) {
size_t didx = 31 - 1;
if (parent_info[u][idx] != parent_info[v][idx]) {
u = parent_info[u] [idx];

v = parent_info[v][idx];

break;

18



return u;

}

private:
void dfs(size_t root, size_t depth) {
node_depth[root] = depth;

for (size_t child_node : tree[root]) {
parent_info[child_node][@] = root;

for (size_t i = 1; i < 32; 1i++) {
size_t p = parent_info[child_node][i - 1];

J/ 2 NG =2N (7 -1)+ 2N (7i-1)
parent_info[child_node][i] = parent_info[p][i - 1];
}

dfs(child_node, depth + 1);

+s

¥
N

DFS

#include <cstdio>
#include <vector>

size_t dfs_time = 0;
std::vector<std::vector<size_t>> graph;

std::vector<int> visited;
std::vector<size_t> parent;
std::vector<size_t> discover_time;
std::vector<size_t> finish_time;

void dfs_visit(size_t source_node) {
dfs_time++;
discover_time[source_node] = dfs_time;
visited[source_node] = 1;

for (size_t adjacent_node : graph[source_node]) {
if (visited[adjacent_node] == 0) {
parent[adjacent_node] = source_node;
discover_time[adjacent_node] = dfs_time;
dfs_visit(adjacent_node);




}

}

dfs_time++;
finish_time[source_node] = dfs_time;

void dfs_graph() {

int

dfs_time = 0;

visited.assign(graph.size(), 0);
parent.assign(graph.size(), 0);
discover_time.assign(graph.size(), 0);
finish_time.assign(graph.size(), 0);

for (size_t i = 1; i < graph.size(); i++) {
if (visited[i] == 0) {
dfs_visit(i);
}

main(void) {

size_t n, m;

n=m=0;

std::scanf ("%zu%zu'", &n, &m);

graph.resize(n + 1);

for (size_t i = 0; i < m; i++) {
size_t from_node, to_node;
from_node = to_node = 0;

std::scanf ("%zu%zu", &from_node, &to_node);

graph[from_node] .push_back(to_node);
}

dfs_graph();

for (size_t i = 1; i <= n; i++) {
std::printf("%zu ", parent[i]);

}

std::putchar('\n');

for (size_t i = 1; i <= n; i++) {
std::printf("%zu ", discover_time[i]);

}

std::putchar('\n');

20



for (size_t i = 1; i <= n; i++) {
std::printf("%zu ", finish_time[i]);

}
std::putchar('\n');

return 0O;

R

#include <queue>
#include <vector>

struct TopoResult {
int result_code;
std::vector<size_t> result;

s
/10 T 4%

// Sorted sequence cannot be
// determined, XTI HFFAE— (FH: EEHIANEAOHNTNANE S W
TENEKATL)

TopoResult topo_sort(std::vector<std::vector<size_t>> const &graph) {
// © -> Sorted sequence determined
// 1 -> Inconsistency found
// 2 —-> Sorted sequence cannot be determined.
int result_code = 0;
std::vector<size_t> result;
result.reserve(graph.size());

std::vector<size_t> in_count;
in_count.resize(graph.size(), 0);

for (std::vector<size_t> const &out_list : graph) {
for (size_t out_node : out_list) {
in_count[out_node]++;
}
}

std::queue<size_t> node_queue;

for (size_t i = 0; i < graph.size(); i++) {
if (in_count[i] == 0) {
node_queue.push(i);

}




if (node_queue.size() > 1) {
result_code = 2;

}

while (!node_queue.empty()) {
if (node_queue.size() > 1) {
result_code = 2;

}
size_t current_node = node_queue.front();
node_queue.pop();

result.push_back(current_node);
for (size_t other_node : graph[current_node]) {
if (in_count[other_node] == 1) {

node_queue.push(other_node) ;

}
in_count[other_node]--;
}

if (result.size() < graph.size()) {
result_code = 1;

}

TopoResult r = {result_code, result};

return r;

DFs #hhEFF

#inc
#inc
#inc

size
std:

std:
std:
std:
std:
std:

void

lude <algorithm>
lude <cstdio>
lude <vector>

_t dfs_time = 0;
:vector<std::vector<size_t>> graph;

:vector<int> visited;
:vector<size_t> parent;
:vector<size_t> discover_time;
:vector<size_t> finish_time;
:vector<size_t> topo_list;

dfs_visit(size_t source_node) {
dfs_time++;
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discover_time[source_node] = dfs_time;
visited[source_node] = 1;

for (size_t adjacent_node : graph[source_node]) {
if (visited[adjacent_node] == 0) {
parent[adjacent_node] = source_node;
discover_time[adjacent_node] = dfs_time;
dfs_visit(adjacent_node);

}

dfs_time++;
finish_time[source_node] = dfs_time;

topo_Tlist.push_back(source_node);

}

void dfs_graph() {
dfs_time = 0;

visited.assign(graph.size(), 0);
parent.assign(graph.size(), 0);
discover_time.assign(graph.size(), 0);
finish_time.assign(graph.size(), 0);
topo_list.resize(0);

for (size_t i = 1; i < graph.size(); i++) {
if (visited[i] == 0) {
dfs_visit(i);
+
}

std::reverse(std::begin(topo_list), std::end(topo_list));
}

int main(void) {
size_t N = 0;

std::scanf("%zu", &N);
graph.resize(N + 1);

for (size_t i = 1; i <= N; i++) {
size_t a = 0;

while (std::scanf("%zu", &a) == 1) {
if (a == 0) {
break;
}

graph[i].push_back(a);
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}
dfs_graph();

for (size_t node : topo_list) {
std::printf("%zu ", node);

}
std::putchar('\n');

return 0;

DFS 52EE 5 &

#include <algorithm>
#include <cstdio>
#include <vector>

size_t dfs_time;

std::vector<int> visited;

std::vector<size_t> finish_order;
std::vector<std::vector<size_t>> graph;
std::vector<std::vector<size_t>> reversed_graph;
std::vector<std::vector<size_t>> scc_by_node;

void dfs_passi();

void dfs_visit_passl(size_t source_node);

void dfs_pass2();

void dfs_visit_pass2(size_t source_node, size_t tree_root);
void generate_reverse_graph();

int main(void) {

size_t n, m;

n=m=0;

std::scanf("%zu%zu", &n, &m);

graph.resize(n + 1);

for (size_t i = 0; i < m; i++) {
size_t from_node, to_node;
from_node = to_node = 0;

std::scanf("%zu%zu", &from_node, &to_node);

graph[from_node] .push_back(to_node);




generate_reverse_graph();
dfs_passl();
dfs_pass2();

for (size_t i = 1; i <= nj i++) {
for (size_t scc_node : scc_by_node[i]) {
std::printf("%zu ", scc_node);
}
if (!scc_by_node[i].empty()) {
std::putchar('\n'");
}
h;

return 0;

}

void dfs_passi() {
dfs_time = 0;
visited.assign(graph.size(), 0);
finish_order.clear();

for (size_t i = 0; i < graph.size(); i++) {
if (visited[i] == 0) {
dfs_visit_passi(i);
}
}

std::reverse(std::begin(finish_order), std::end(finish_order));

}

void dfs_visit_passl(size_t source_node) {
dfs_time++;
visited[source_node] = 1;

for (size_t adjacent_node : graph[source_node]) {
if (visited[adjacent_node] == 0) {
dfs_visit_passl(adjacent_node);
}
}

dfs_time++;

finish_order.push_back(source_node) ;

}
void dfs_pass2() {
visited.assign(graph.size(), 0);

scc_by_node.resize(graph.size());

for (size_t node : finish_order) {
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if (visited[node] == 0) {
dfs_visit_pass2(node, node);

}
X

void dfs_visit_pass2(size_t source_node, size_t tree_root) {
visited[source_node] = 1;
scc_by_node[tree_root].push_back(source_node) ;

for (size_t adjacent_node : reversed_graph[source_node]) {
if (visited[adjacent_node] == 0) {
dfs_visit_pass2(adjacent_node, tree_root);

}
}

void generate_reverse_graph() {
reversed_graph.resize(graph.size());

for (size_t i = 1; i < graph.size(); i++) {
for (size_t adjacent_node : graph[i]) {
reversed_graph[adjacent_node].push_back(i);

}

/N R

Kruslkal
#include <algorithm>

#include <numeric>
#include <vector>

struct DisjointSet {
std::vector<size_t> set;
std::vector<size_t> set_size;

explicit DisjointSet(size_t size) {
set.resize(size);
set_size.resize(size, 1);
std::iota(std::begin(set), std::end(set), 0);
}

size_t find(size_t x) {
std::vector<size_t> path(16);

while (set[x] != x) {
path.push_back(x) ;
x = set[x];




s

for (size_t node : path) {
set[node] = x;

}

return x;

}

void unite(size_t x, size_t y) {
size_t x_root = find(x);
size_t y_root = find(y);

if (x_root == y_root) {
return;

}

if (set_size[x_root] < set_sizel[y_root]) {
set[x_root] = y_root;
set_sizel[y_root] += set_size[x_root];
} else {
set[y_root] = x_root;
set_size[x_root] += set_sizel[y_root];

s
/11 Th

struct Edge {
size_t from;
size_t to;
int weight;

explicit constexpr Edge(size_t from_, size_t to_, int weight_)
from{from_}, to{to_}, weight{weight_} {};
13

/] Bl ER: 2 N\ Hyedge_listi # # 7
std::vector<kdge> Kruskal(std::vector<kdge> &edge_list, size_t
node_count) {
std::sort(std::begin(edge_list), std::end(edge_list),
[](Edge const &a, Edge const &b) { return a.weight < b.
weight; });
DisjointSet set{node_count + 1};

std::vector<Edge> result;

for (Edge const &edge : edge_list) {




size_t from = edge.from;
size_t to = edge.to;

size_t from_root = set.find(from);
size_t to_root = set.find(to);

if (from_root != to_root) {
result.push_back(edge);
set.unite(from_root, to_root);

}
if (result.size() == (node_count - 1)) {
break;
}
}
return result;
}
Prim

#include <queue>
#include <vector>

typedef long long i64;
[/ WAL 47, #1T 4

struct Edge {
size_t from;
size_t to;
164 weight;

explicit constexpr Edge(size_t from_, size_t to_, i64 weight_)
from{from_}, to{to_}, weight{weight_} {};
15

struct NodeInfo {
size_t node;
size_t parent;
size_t min_weight_edge_-id;
164 min_weight_to_tree;

explicit constexpr NodeInfo(size_t node_, size_t parent_,
size_t min_weight_edge_id_, i64 weight_
)
node{node_}, parent{parent_}, min_weight_edge_id{
min_weight_edge_id_},
min_weight_to_tree{weight_} {};

friend bool operator<(NodeInfo const &left, NodeInfo const &right)
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{

return left.min_weight_to_tree > right.min_weight_to_tree;
+s

std::vector<kEdge> Prim(std::vector<std::vector<Edge>> const &graph) {
std::vector<int> visited;
visited.resize(graph.size(), 0);

std::vector<kEdge> result;
result.reserve(graph.size() - 1);

std::priority_queue<NodeInfo> node_queue;
visited[1l] = 1;

for (size_t i = 0; i < graph[l].size(); i++) {
size_t target_node = graph[1][i].to;
i64 weight = graph[1][i].weight;
node_queue.emplace(target_node, 1, i, weight);

}

while (!node_queue.empty()) {
NodeInfo next_node_info = node_queue.top();
node_queue.pop();

if (visited[next_node_info.node] == 0) {
visited[next_node_info.node] = 1;

result.push_back(graph[next_node_info.parent]
[next_node_info.min_weight_edge_-id]);

for (size_t i = 0; i < graph[next_node_info.node].size(); i
++) {
size_t target_node = graph[next_node_info.node][i].to;
164 weight = graph[next_node_info.node][i].weight;
node_queue.emplace(target_node, next_node_info.node, 1,
weight);

}

if (result.size() == graph.size() - 1) {
break;
}
}

return result;
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#include <vector>

#define MY_INFINITY (1LL << 61)
typedef long long 1i64;

struct Edge {
size_t to;
164 weight;

explicit constexpr Edge(size_t to_, 164 weight_)
: to{to_}, weight{weight_} {};
}s

struct BFResult {
bool valid;
std::vector<i64> shortest_distance;
std::vector<size_t> parent;

}s

BFResult BF(std::vector<std::vector<tEdge>> const &graph, size_t
source_node) {
bool valid = true;
std::vector<i6e4> shortest_distance;
std::vector<size_t> parent;

shortest_distance.resize(graph.size(), MY_INFINITY);
parent.resize(graph.size(), 0);

shortest_distance[source_node] = 0;

for (size_t i = 0; i < graph.size() - 1; i++) {

for (size_t from_node = 1; from_node < graph.size(); from_node

++) {
for (Edge const &edge : graph[from_node]) {
size_t to_node = edge.to;

if (shortest_distance[from_node] + edge.weight <
shortest_distance[to_node]) {
shortest_distance[to_node] =
shortest_distance[from_node] + edge.weight;
parent[to_node] = from_node;

}

for (size_t from_node = 1; from_node < graph.size(); from_node++) {

for (Edge const &edge : graph[from_node]) {
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if (shortest_distance[from_node] + edge.weight <
shortest_distance[edge.to]) {
valid = false;

break;
}
}
if (lvalid) {
break;
+
}
return {valid, shortest_distance, parent};
}
HRFFE

#include <queue>
#include <vector>

#define MY_INFINITY (1LL << 61)
typedef long long 1i64;

struct Edge {
size_t to;
164 weight;

explicit constexpr Edge(size_t to_, 164 weight_)
: to{to_}, weight{weight_} {};
s

struct TopoResult {
int result_code;
std::vector<size_t> result;

15

struct DistanceResult {
std::vector<i6e4> shortest_distance;
std::vector<size_t> parent;

15

TopoResult topo_sort(std::vector<std::vector<kdge>> const &graph);
DistanceResult DAGShortestPath(std::vector<std::vector<Edge>> const &
graph,
size_t source_node);

// Sorted sequence cannot be
// determined, X rx#HIHFFAE— (£H: EEHANEAONT AN K4 K
TEAMNEATL)
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TopoResult topo_sort(std::vector<std::vector<tEdge>> const &graph) {
// O -> Sorted sequence determined
// 1 -> Inconsistency found
// 2 -> Sorted sequence cannot be determined.
int result_code = 0;
std::vector<size_t> result;
result.reserve(graph.size());

std::vector<size_t> in_count;
in_count.resize(graph.size(), 0);

for (std::vector<Edge> const &out_list : graph) {
for (Edge const &edge : out_list) {
in_count[edge.to]++;
}
}

std::queue<size_t> node_queue;

for (size_t i = 0; i < graph.size(); i++) {
if (in_count[i] == 0) {
node_queue.push(i);
+
h;

if (node_queue.size() > 1) {
result_code = 2;

}

while (!node_queue.empty()) {
if (node_queue.size() > 1) {
result_code = 2;

}

size_t current_node = node_queue.front();
node_queue.pop();

result.push_back(current_node);

for (Edge const &edge : graph[current_node]) {
size_t other_node = edge.to;

if (in_count[other_node] == 1) {
node_queue.push(other_node) ;

}

in_count[other_node]--;

}

if (result.size() < graph.size()) {
result_code = 1;
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}

TopoResult r = {result_code, result};

return r;

}

DistanceResult DAGShortestPath(std::vector<std::vector<Edge>> const &
graph,
size_t source_node) {
std::vector<ie4> distance;
std::vector<size_t> parent;

TopoResult topo_result = topo_sort(graph);
std::vector<size_t> topo_list = topo_result.result;

distance.resize(graph.size(), MY_INFINITY);
parent.resize(graph.size(), 0);

distance[source_node] = 0;

for (size_t from_node : topo_list) {
for (Edge const &edge : graph[from_node]) {
size_t to_node = edge.to;

if (distance[from_node] + edge.weight < distance[to_node])

{

distance[to_node] = distance[from_node] + edge.weight;
parent[to_node] = from_node;

}
}
}
return {distance, parent};
}
Dijkstra

#include <cstddef>
#include <queue>
#include <vector>

#define MY_INFINITY (1LL << 60)
typedef long long 1i64;
struct Edge {

size_t to;
164 weight;
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explicit constexpr Edge(size_t to_, 164 weight_)
: tof{to_}, weight{weight_3} {}
}s

struct NodeInfo {
size_t node;
i64 distance;

friend bool operator<(NodeInfo const &left, NodeInfo const &right)
{

return left.distance > right.distance;

}

explicit constexpr NodeInfo(size_t node_, i64 distance_)
node{node_}, distance{distance_} {}

+s

std::vector<i6e4> dijkstra(std::vector<std::vector<kEdge>> const &
node_to_edges,
size_t source_node) {
std::vector<i64> result;
std::vector<int> visited;

result.resize(node_to_edges.size(), MY_INFINITY);
visited.resize(node_to_edges.size(), 0);

std::priority_queue<NodeInfo> node_queue;

result[source_node] = 0;
node_queue.emplace(source_node, 0);

while (!node_queue.empty()) {
NodeInfo current_node_info = node_queue.top();

node_queue.pop();

if (visited[current_node_info.node] == 1) {
continue;

}

for (Edge const &edge : node_to_edges[current_node_info.node])
{

size_t other_node = edge.to;

if (result[other_node] >
result[current_node_info.node] + edge.weight) {
result[other_node] =
result[current_node_info.node] + edge.weight;
node_queue.emplace(other_node, result[other_node]);
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visited[current_node_info.node] = 1;

}
return result;
b
RKi
FK
/1 O(V(E*2))
/] RETRFAfi. EH. HHF
/] RFATA: FEF A
/] Ei: K EA A
/] B EEBR

#include <cstdio>
#include <cstring>
#include <queue>

#include <vector>

#define MAX_NODE 2005
#define INFINITY (1LL << 60)

typedef long long 1i64;
i64 residual_graph[MAX_NODE][MAX_NODE];

struct Edge {
size_t to;
164 weight;

explicit constexpr Edge(size_t to_, 164 weight_)
: to{to_}, weight{weight_3} {}
+s

class EK {
public:
size_t node_count;

private:
std: :vector<std::vector<size_t>> node_to_edges;

public:
explicit EK(std::vector<std::vector<Edge>> const &graph) {
std::memset(residual_graph, 0, sizeof(residual_graph));
node_count = graph.size() - 1;
node_to_edges.resize(graph.size());

for (size_t from_node = 0; from_node < graph.size(); from_node
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}

++) {

for (Edge const &edge : graph[from_node]) {
size_t to_node = edge.to;
164 weight = edge.weight;

// antiparallel edge exists

// parallel edges are allowed

if (residual_graph[to_node][from_node] != 0) {
node_count++;

residual_graph[from_node] [node_count] += weight;
residual_graph[node_count] [to_node] += weight;

if (node_count > node_to_edges.size() - 1) {
node_to_edges.resize(2 * node_count);

3

// E &M Anode_to_edges (MM ARKE) FHEILK WA
node_to_edges[from_node].push_back(node_count);
node_to_edges[node_count].push_back(from_node) ;
node_to_edges[node_count].push_back(to_node);
node_to_edges[to_node].push_back(node_count);
} else {

residual_graph[from_node][to_node] += weight;
node_to_edges[from_node].push_back(to_node);
node_to_edges[to_node].push_back(from_node);

X
}

// remove self loop

for (size_t i = 0; i <= node_count; i++) {
residual_graph[i][i] = 0;
}

164 max_flow(size_t source_node, size_t target_node) {

i64 max_flow = 0Q;

while (true) {
i64 augment = rg_bfs(source_node, target_node);

// std::printf("augment: %1ld\n", augment);
if (augment == 0) {
break;

}

max_flow += augment;
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return max_flow;

}

private:
i64 rg_bfs(size_t from_node, size_t to_node) {
std::vector<int> visited;

visited.resize(node_count + 1, 0);

std::queue<size_t> node_queue;
std::vector<size_t> parent;

parent.resize(node_count + 1, 0);
node_queue.push(from_node) ;
visited[from_node] = 1;

while (!node_queue.empty()) {
size_t current_node = node_queue.front();

node_queue.pop();

if (current_node == to_node) {
break;

}

for (size_t next_node : node_to_edges[current_node]) {
if (residual_graph[current_node][next_node] > 0) {
if (visited[next_node] == 0) {
visited[next_node] = 1;
parent[next_node] = current_node;
node_queue.push(next_node) ;

}

if (!lvisited[to_node]) {
return O;

}

size_t current_node = to_node;
i64 augment = INFINITY;

while (current_node != from_node) {
augment = std::min(
augment, residual_graph[parent[current_node]][
current_node]);
current_node = parent[current_node];
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current_node = to_node;

while (current_node != from_node) {
residual_graph[parent[current_node]][current_node] -=
augment;
residual_graph[current_node] [parent[current_node]] +=
augment;

current_node = parent[current_node];

+
return augment;
+s
int main() {
int T = 0;
std::scanf("%d", &T);
for (int id = 0; id < T; dd++) {
size_t node_count, edge_count, source_node, target_node;
std::scanf ("%zu%zu%zu¥%zu", &node_count, &edge_count, &
source_node,

&target_node);
std::vector<std::vector<Edge>> graph;
graph.resize(node_count + 1);
for (size_t i = 0; i < edge_count; i++) {

size_t from_node, to_node;
from_node = to_node = 0;
i64 weight = 0;

std::scanf ("%zu%zu%lld", &from_node, &to_node, &weight);

graph[from_node] .emplace_back(to_node, weight);
}

EK ek{graph};

std::printf("%lld\n", ek.max_flow(source_node, target_node));




[/ RETRFATH. B, BF
[/ RFTHh: HAF K

/] &
TAEX

#include
#include
#include
#include

7 & A g
HEHR

<cstdio>
<cstring>
<queue>
<vector>

#define MAX_NODE 2005
#define INFINITY (1LL << 60)

typedef long long i64;

i64 residual_graph[MAX_NODE][MAX_NODE];

struct Edge {
size_t to;
164 weight;

explicit constexpr Edge(size_t to_, 164 weight_)

}s

: to{to_}, weight{weight_} {}

class Dinic {
public:
size_t node_count;

private:

std:

:vector<std::vector<size_t>> node_to_edges;

public:
explicit Dinic(std::vector<std::vector<Edge>> const &graph) {

std: :memset(residual_graph, 0, sizeof(residual_graph));
node_count = graph.size() - 1;
node_to_edges.resize(graph.size());

for (size_t from_node = 0; from_node < graph.size(); from_node

++) {
for (Edge const &edge : graph[from_node]) {
size_t to_node = edge.to;
164 weight = edge.weight;

// antiparallel edge exists

// parallel edges are allowed

if (residual_graph[to_node][from_node] != 0) {
node_count++;

residual_graph[from_node] [node_count] += weight;
residual_graph[node_count] [to_node] += weight;
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if (node_count > node_to_edges.size() - 1) {
node_to_edges.resize(2 * node_count);

3

/] E &M #Enode_to_edges (M AR E) ¥ & LK ML
node_to_edges[from_node] .push_back(node_count);
node_to_edges[node_count].push_back(from_node);
node_to_edges[node_count].push_back(to_node);
node_to_edges[to_node].push_back(node_count);
} else {

residual_graph[from_node][to_node] += weight;
node_to_edges[from_node].push_back(to_node);
node_to_edges[to_node].push_back(from_node) ;

}
}

// remove self loop

for (size_t i = 0; i <= node_count; i++) {
residual_graph[i][i] = 0;
}
}

164 max_flow(size_t source_node, size_t target_node) {
i64 max_flow = 0;

while (true) {
std::vector<size_t> node_to_depth =
rg_bfs(source_node, target_node);

/[l CREZART X, FTHARBEAR) K2
if (node_to_depth[target_node] == 0) {
break;

}

i64 augment =

dfs(source_node, target_node, INFINITY, node_to_depth);

if (augment == 0) {

break;
}
max_flow += augment;
}
return max_flow;
}
private:
/] BFSa B, RE&EANF K8 EHK
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std::vector<size_t> rg_bfs(size_t from_node, size_t to_node) {
std::vector<int> visited;

visited.resize(node_count + 1, 0);

std: :queue<size_t> node_queue;
std::vector<size_t> parent;
std::vector<size_t> depth;

parent.resize(node_count + 1, 0);
depth.resize(node_count + 1, 0);

node_queue.push(from_node);
depth[from_node] = 1;
visited[from_node] = 1;

while (!node_queue.empty()) {
size_t current_node = node_queue.front();

node_queue.pop();

if (current_node == to_node) {
break;

}

for (size_t next_node : node_to_edges[current_node]) {
if (residual_graph[current_node][next_node] > 0) {
if (visited[next_node] == 0) {
depth[next_node] = depth[current_node] + 1;
visited[next_node] = 1;
parent[next_node] = current_node;
node_queue.push(next_node) ;

}

return depth;
}

[/ Gin_flow: 2K ANZT AWK KE, & T A&, HINFINITY
[/ BB OERR KT\ 2
i64 dfs(size_t from_node, size_t to_node, i64 1in_flow,
std::vector<size_t> &depth) {
if ((from_node == to_node) || (in_flow == 0)) {
return in_flow;

}

/| REENZFT AN LT R E
i64 remain_flow = 1in_flow;
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}s

for (size_t next_node : node_to_edges[from_node]) {
/] XRERT—EHT A
if (depth[next_node] == depth[from_node] + 1) {
if (residual_graph[from_node][next_node] > 0) {
/] XTHE— %44, 2P BRARAITHLH R E
i64 to_allocate_flow = std::min(
remain_flow, residual_graph[from_node][
next_node]);

EILETY LT %
i64 allocated_flow =

dfs(next_node, to_node, to_allocate_flow, depth

)3

/Il TETRECEREE, AXEWNHAREFRLAFZANA

ZTRARRE
if (allocated_flow == 0) {
depth[next_node] = 0;
}

remain_flow —-= allocated_flow;

residual_graph[from_node] [next_node] -=
allocated_flow;

residual_graph[next_node][from_node] +=
allocated_flow;

}

if (remain_flow == 0) {
break;
}
}

return (in_flow - remain_flow);

int main() {

int T = 0;
std::scanf("%d", &T);

for (int id = 0; id < T; id++) {

size_t node_count, edge_count, source_node, target_node;
std::scanf ("%zu%zu%zu%zu", &node_count, &edge_count, &
source_node,

&target_node);

std::vector<std::vector<Edge>> graph;
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FFT

graph.resize(node_count + 1);

for (size_t i = 0; i < edge_count; i++) {
size_t from_node, to_node;
from_node = to_node = 0;
i64 weight = 0;

std::scanf ("%zu%zu%lld", &from_node, &to_node, &weight);

graph[from_node] .emplace_back(to_node, weight);
+

Dinic dinic{graph};

std::printf("%Llld\n", dinic.max_flow(source_node, target_node))

b

#include <cmath>

#include <complex>
#include <cstdio>
#include <vector>

double const PI = std::acos(-1);

using Complex = std::complex<double>; // STL complex
constexpr dint MAX_N = 1 << 20;

int rev[MAX_N];

void change(Complex y[], int len);
void fft(Complex y[], int len, 1int on);

int main(void) {
std::vector<double> v{1, 1, -1, 2, 1, 0, -1, 1};
std::vector<Complex> cv;
cv.resize(v.size());

for (size_t i = 0; i < v.size(); i++) {
cv[il.real(v[il);
cv[i].imag(0);

}

fft(cv.data(), cv.size(), 1);

43



28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76

for (size_t i = 0; i < v.size(); i++) {

std::iprintf("%.5f + %.5fi\n", cv[i]l.real(), cv[i].imag());

}
}

/] EHEEERIE len 2 2 &
// 8 rev[i] ¥ i BM#EHE
void change(Complex y[], int len) {
for (int i = 0; i < len; ++i) {
rev[i] = rev[i >> 1] >> 1;
if (1&1) {// wx&F—fE 1, WHHER len/2
rev[i] [= len >> 1;
}
}
for (int i = 0; i < len; ++i) {
if (i < rev[i]) { // RiIEEXXH R EE — K
swap(y[i], y[rev[ill);
}
}

return;

3

/*
* i FFT
* len &/ & 2k R
* on == 1 W & DFT, on == -1 i 2 IDFT
*/
void fft(Complex y[], int len, dint on) {
/] L r E#®
change(y, len);

/[l BERe# R, —FF e, AKEN-—2HEAKEANZ, —HEAHEHKEHN

len,
for (int h = 2; h <= len; h <<= 1) {
[/ wn: SR EAEREEF: wri_h

Complex wn(cos(2 * PI / h), sin(on * 2 x PI / h));

/] &3, 3 len / h %

for (int j = 0; j < len; j += h) {

/[l HHEYWMBMLER, —FHE 1 =wo_n, ZFENU wn X4 AR
% 3

// wAl_n

/] ...

Complex w(l, 0);

for (int k = j; k < j + h / 2; k++) {
/] M LA AW R T A R

Complex u = y[k];
Complex t = w * y[k + h / 2];
/] Xt EEFH LS 28 M E R LR

y[k] = u + t;
y[k + h / 2] = u - t;
/] E¥A [step)] wHew—=fm [7F ]

OB R A R &K
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[/ Ta Bl bW ri—BE T#HEXR], #%8EFHRMR

4
[/ =N BHEREEFTEXANA KRG FTHE*E

W = w * wn;

}
}
}
/] wmFEZ IDFT, CWHEEENE —PMTELFREETE A %,
¥ E len.
if (on == -1) {
for (int i = 0; i < len; i++) {
y[i].real(y[i].real() / len);
y[i]l.imag(y[i]l.imag() / len);
}
}
}
ZmMAFE

#include <algorithm>
#include <cmath>
#include <complex>
#include <cstdio>
#include <vector>

#define EPS le-6

typedef double number;
typedef long long 1i64;

double const PI = std::acos(-1);

using Complex = std::complex<number>; // STL complex
void change(Complex y[], int len);
void fft(Complex y[], int len, 1int on);

class Multiplier {
private:
std::vector<Complex> a_coff_list;
std::vector<Complex> b_coff_list;
size_t a_len;
size_t b_len;
size_t input_len;

public:
explicit Multiplier(std::vector<number> const &a_list,
std: :vector<number> const &b_Tlist) {
input_len = std::max(a_list.size(), b_list.size());
size_t len = nextPowerOfTwo(2 * 1input_len);
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}

a_len = a_list.size();
b_list.size();

(on
—
D
=)
1

a_coff_list.resize(len);
b_coff_list.resize(len);

for (size_t i = 0; i < a_list.size(); i++) {
a_coff_list[i].real(a_list[i]);
}

for (size_t i = 0; i < b_list.size(); i++) {
b_coff_Tlist[i].real(b_list[i]);
+

// can only be called once!!!
std::vector<number> multiply() {

}

fft(a_coff_list, false);
fft(b_coff_list, false);

std::vector<Complex> c_coff_list;
c_coff_Tlist.resize(a_coff_list.size());

std::transform(std: :begin(a_coff_1list), std::end(a_coff_list),
std::begin(b_coff_list), std::begin(c_coff_list)

3
[J(Complex a, Complex b) { return a x b; });
fft(c_coff_list, true);

std: :vector<number> result;
result.resize(a_len + b_len - 1);

std::transform(std: :begin(c_coff_1list),
std::begin(c_coff_list) + (long)(a_len + b_len -
1),
std::begin(result), [](Complex a) { return a.
real(); 1);

return result;

private:

size_t nextPowerOfTwo(size_t input) {

if (input == 0) {
return 1;

}

input--;
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}

input |= (input >> 1);
input |= (input >> 2);
input |= (input >> 4);
input |= (input >> 8);
input |= (input >> 16);
input |= (input >> 32);

return (input + 1);

/] EBEFERIE len 2 2 B F
// & rev[il X i BM#¥%EmE
void change(std::vector<Complex> &y) {

std::vector<size_t> rev;
size_t len = y.size();
rev.resize(len, 0);

for (size_t i = 0; i < len; ++i) {
rev[i] = rev[i >> 1] >> 1;
if (1&1){// wxXkmxE—fxE 1, WHM
rev[i] |= len >> 1;

B

£ i, len/2

An-

}
}
for (size_t i = 0; i < len; ++i) {
if (i <revlil) { // RIEFEXHRABE — K
std::swap(y[i], y[rev[il]l);

}
}
return;
}
/*
* f FFT
x len & 27k B =R
*x reverse == false H &£ DFT, reverse == true i & IDFT

void fft(std::vector<Complex> &y, bool reverse) {

size_t len = y.size();
/] )7 E#®
change(y);

int on = 1;
if (reverse) {

on = -1;

}

/] EW AR, —FhE, ANKEX—GHBEKENZ, —HEEHEK
B H

// len.
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130
131

132
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136
137
138
139
140
141
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144
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151
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157
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160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

% E

for (size_t h = 2; h <= len; h <<= 1) {
[/ wn: %R B Z AR A E R wrl_h
Complex wn(cos(2 * PI / (double)h), sin(on * 2 x PI / (
double)h));
// &, ¥ len / h K.
for (size_t j = 0; j < len; j += h) {
/] "HEYWMELER, —FHRE 1 =wo_n, ZFENU wn
/] A FE#EHB: whl_n
/] ...
Complex w(l, 0);
for (size_t k = j; k < j + h / 2; k++t) {
/] =AM R AN E T F A R
Complex u = y[k];
Complex t = w * y[k + h / 2];
/] ZRAELFH > BWE R MAR
y[k] = u + t;
ylk + h / 2] = u - t;
// )31;4 [step] FHo—EMm [ FAN] FH KM
K 3
// Hl?;; bR — B [#ER], #%3FEEFH%K
AR 2
[l — M MNEHEREHFFEXANARE TN F IS
W = w * wn;
}
}
}
// wmFEZ IDFT, e EENE - MTELARZR T E BE %,
// len.
if (on == -1) {
for (size_t i = 0; i < len; i++) {
y[i]l.real(y[i].real() / (double)len);
}
}
}
15
int main(void) {

size_t a_len 03
size_t b_len = 0;
std::scanf("%zu%zu", &a_len, &b_len);

a_lent+;
b_len++;

std::vector<number> a_list;
std::vector<number> b_1l1ist;
a_list.reserve(a_len);
b_list.reserve(b_len);

for (size_t i = 0; i < a_len; i++) {
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double -input = 0;
std::iscanf("%1lf", &input);
a_list.push_back(input);

for (size_t i = 0; i < b_len; i++) {
double input = 0;
std::scanf ("%Lf", &input);
b_Tlist.push_back(input);

}

Multiplier mul{a_list, b_list};

std::vector<number> result = mul.multiply();

for (size_t i = 0; i < result.size(); i++) {
std::printf("%lld ", (i64)(result[i] + 0.5));

}

std::putchar('\n');

return 0;

KEBHFRE

#include <algorithm>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstring>
#include <vector>

#define BUFFER_LEN 1000005
#define EPS le-6

typedef double number;
typedef long long i64;

double const PI = std::acos(-1);

char buffer[BUFFER_LEN] = {0};

using Complex = std::complex<number>; // STL complex
void change(Complex y[], int len);

void fft(Complex y[], int len, 1int on);

std::vector<number> get_big_int();

class Multiplier {
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private:
std::vector<Complex> a_coff_list;
std::vector<Complex> b_coff_list;
size_t a_len;
size_t b_len;
size_t dinput_len;

public:
explicit Multiplier(std::vector<number> const &a_list,
std::vector<number> const &b_T1list) {
input_len = std::max(a_list.size(), b_list.size());
size_t len = nextPowerOfTwo(2 * +input_len);

a_len = a_list.size();
b_len b_Tlist.size();

a_coff_list.resize(len);
b_coff_list.resize(len);

for (size_t i = 0; i < a_list.size(); i++) {
a_coff_list[i].real(a_list[i]);
}

for (size_t i = 0; i < b_list.size(); i++) {
b_coff_list[i].real(b_list[i]);
}
}

// can only be called once!!l!
std::vector<number> multiply() {
fft(a_coff_list, false);
fft(b_coff_list, false);

std::vector<Complex> c_coff_list;
c_coff_Tlist.resize(a_coff_list.size());

std::transform(std: :begin(a_coff_1list), std::end(a_coff_list),
std::begin(b_coff_list), std::begin(c_coff_list)

)
[J(Complex a, Complex b) { return a x b; });
fft(c_coff_list, true);

std: :vector<number> result;
result.resize(a_len + b_len - 1);

std::transform(std: :begin(c_coff_1list),
std::begin(c_coff_list) + (long)(a_len + b_len -
1),
std::begin(result), [](Complex a) { return a.
real(); 1);

50



return result;

}

private:
size_t nextPowerOfTwo(size_t 1input) {
if (input == 0) {

return 1;
}
input-—;
input |= (input >> 1);
input |= (input >> 2);

|
|
input |= (input >> 4);
|
|
|

input |= (input >> 8);
input |= (input >> 16);
input |= (input >> 32);

return (input + 1);

}

/] ABEFEERIEE len £ 2 B F

// 8 rev[i]l X 1 BMEEWHE

void change(std::vector<Complex> &y) {
std::vector<size_t> rev;
size_t len = y.size();
rev.resize(len, 0);

for (size_t i = 0; i < len; ++i) {
rev[i] = rev[i >> 1] >> 1;
if (&1) {// mR&EFE—f&E 1, WA K len/2
rev[i] |= len >> 1;
}
}
for (size_t i = 0; i < len; ++i) {
if (3 <rev[il) { // RIEFTHATE — K
std::swap(y[i], y[rev[ill);

}
}
return;
}
/*
x f FFT
x len & 2k B =R
x reverse == false H & DFT, reverse == true K & IDFT
*
/

void fft(std::vector<Complex> &y, bool reverse) {
size_t len = y.size();
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149
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160
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168

/] 5 E %
change(y);
int on = 1;
if (reverse) {
on = -1;
}
/] B eHIR, e, KKEA—EHEKEANZ, —HEeiE K
// len,
for (size_t h = 2; h <= len; h <<= 1) {
// wn: Y RTEAEZARMERK: whl_h
Complex wn(cos(2 * PI / (double)h), sin(on *x 2 *x PI / (
double)h));
// &3, # len / h %K.
for (size_t j = 0; j < len; j += h) {
[/ AEYWELER, —FHRE 1 =wo_n, ZFZNU wn
/] A& whl_n
/] ...
Complex w(l, 0);
for (size_t k = j; k < j + h / 2; k++) {
/] Z A A0 & MR T A
Complex u = y[k];
Complex t = w * y[k + h / 2];
/] ZREEFIH L E0NE R LR
y[k]l] = u + t;
ylk + h / 2] = u - t;
// )éi;ﬁ [step] WHo—EA TaFAN] &8 KH
K 3
/[l TaBE] FWE%— %8 [#%Ex], %+ 8EHFHK
R %
[ — M EHEREEFFERAN s FIHE
W = w * wn;
}
}
}
[/ R E IDFT, v M EEHE - IMNTELARERTERE &, £ F
// len.
if (on == -1) {
for (size_t i = 0; i < len; i++) {
y[i].real(y[i].real() / (double)len);
}
}
}
}s
int main(void) {

std::vector<number> a_digit_list = get_big_int();
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std:

std::vector<number> b_digit_list = get_big_int();
Multiplier mul{a_digit_1list, b_digit_list};
std::vector<number> temp = mul.multiply();

std::vector<int> result;
result.resize(2 * temp.size(), 0);

int carry = 0;

for (size_t i = 0; i < temp.size(); i++) {
int current_digit = (int) (temp[i] + 0.5);

current_digit += carry;
result[i] = current_digit % 10;

carry = current_digit / 10;

}

size_t result_len = 0;

for (size_t i = temp.size(); i < result.size(); i++) {

int current_digit = carry;

result[i] = current_digit % 10;
carry = current_digit / 10;

if (carry == 0 && result[i] == 0) {

result_len = 1i;
break;

}

for (size_t i = 0; i < result_len; i++) {
std::putchar(result[result_len - i - 1] + '0');
}

std::putchar('\n');

return 0;

:vector<number> get_big_int() {
std::vector<number> result;
std::scanf("%s", buffer);

size_t num_len = std::strlen(buffer);

result.resize(num_len, 0);
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for

}

retu

#include
#include
#include
#include
#include

struct B

(size_t i = 0; i
result[num_len -

rn result;

<algorithm>
<cctype>
<cstdio>
<string>
<vector>

igInt {

< num_len; i++) {
i - 1] = (number) (buffer[i]

std::vector<int> digits;

size

_t len;

explicit BigInt(size_t capacity) {

+s

digits.resize(ca
len = 1;

pacity, 0);

explicit BigInt(size_t capacity, long long from) {

}

explicit BigInt(size_t capacity, std::string const &from) {

digits.resize(ca
size_t i = 0;

while (from > 0)

digits[i] =
from /= 10;
i+t

}

len = 1;

if (len == 0) {
len = 1;
+

size_t valid_len

for (size_t i

pacity, 0);

{
(int) (from % 10);

= from.size();

= 0; i < from.size(); i++) {

0');
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}

if (!std::disalnum(from[i])) {
valid_len = 1;
break;

}
digits.resize(capacity, 0);

for (size_t i = 0; i < valid_len; i++) {
digits[i] = from[from.size() - i - 1] - '0';

}
len = valid_len;
if (len == 0) {

len = 1;
+

friend BigInt operator+(BigInt const &left, BigInt const &right) {
BigInt result{std::max(left.digits.size(), right.digits.size())

}3
size_t new_len = 0;

if (left.len > right.len) {
std::copy_n(std::begin(left.digits), left.len,
std::begin(result.digits));
for (size_t i = 0; i < right.len; i++) {
result.digits[i] += right.digits[i];
}

new_len = left.len;
} else {
std::copy_n(std::begin(right.digits), right.len,
std::begin(result.digits));

for (size_t i = 0; i < left.len; i++) {
result.digits[i] += left.digits[i];
}

new_len = right.len;

int carry = 0;

for (size_t i = 0; i < result.digits.size(); i++) {
result.digits[i] += carry;
carry = result.digits[i] / 10;
result.digits[i] %= 10;

if (i >= new_len && carry == 0 && result.digits[i] == 0)

55



new_len = 1i;
break;

}

result.len = new_len;

if (result.len == 0) {
result.len = 1;

}

return result;

}

friend BigInt operator-(BigInt const &left, BigInt const &right)

BigInt result{left.digits.capacity()};

std::copy_n(std::begin(left.digits), left.len,
std::begin(result.digits));

for (size_t i = 0; i < left.len; i++) {
result.digits[i] -= right.digits[i];
}

int borrow = 0;

for (size_t i = 0; i < left.len; i++) {
result.digits[i] —-= borrow;

if (result.digits[i] < 0) {
borrow = -result.digits[i] / 10 + 1;
result.digits[i] += borrow * 10;

for (size_t i = 0; i < left.len; i++) {
size_t idx = (left.len - i - 1);

if (result.digits[i] != 0) {

result.len = idx + 1;
break;

}

if (result.len == 0) {
result.len = 1;

}

return result;

}

friend BigInt operator*(BigInt const &left, BigInt

const &right)
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}s

std:

BigInt result{std::max(left.digits.size(), right.digits.size())
s

for (size_t i1 = 0; i < left.len; i++) {
for (size_t j = 0; j < right.len; j++) {
result.digits[i + j] += left.digits[i] * right.digits[j
13

}

int carry = 0;

for (size_t i = 0; i < result.digits.size(); i++) {
result.digits[i] += carry;
carry = result.digits[i] / 10;
result.digits[i] %= 10;

+

result.len = 1;

for (size_t i = 0; i < (left.len + right.len + 1); 1i++) {
size_t idx = left.len + right.len - 1i;

if (result.digits[idx] != 0) {

result.len = idx + 1;
break;

}

return result;

:string to_string() {

std::string s;

s.resize(len, '0');

for (size_t i = 0; i < len; i++) {

s[len - i - 1] = (char)digits[i] + '0';
}

return s;

int main(void) {
long long a, b;

a =

std:

b = e

:scanf ("%lld%1lld", &a, &b);

BigInt b_a{1000, a};
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GCD

BigInt b_b{1000, b};

std::printf("a + b:
std::printf("a - b:
* b:

std::printf("a

return 0;

#include <cstdlib>
#include <tuple>
#include <utility>

typedef {int number;

%s\n",
%s\n",
%s\n",

(b_a + b_b)
(b_a - b_b)
(b_a * b_b)

number gcd(number a, number b) {

a = std::abs(a);

b = std::abs(b);

if (a < b) {
std::swap(a, b);

}

while (b > 0) {
number temp =
b =a % b;
a temp;

}

return a;

}

// d = gcd(a, b) = ax
struct EEResult {
number d;
number x;
number y;

+s

EEResult exgcd(number
a std::abs(a);
b std::abs(b);

number x = 1, y =

number x1 = 0, yl
while (bl > 0) {
number q = al

bj

+ by

a, number b) {

.to_string().data()
.to_string().data()
.to_string() .data()

)
)
)

.
b
.
b
.

b
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std::tie(x, x1) = std::make_tuple(xl, x - q * x1);
std::make_tuple(yl, v - q * yl);
std::tie(al, bl) = std::make_tuple(bl, al - q * bl);

std::tie(y, yl)

}

return EEResult{al, x, y};

ZMHRAKRARE

#include <cstdlib>
#include <tuple>

typedef {int number;

// d = gcd(a, b) = ax
struct EEResult {
number d;
number x;
number y;

15

EEResult exgcd(number
a = std::abs(a);
b = std::abs(b);

number x = 1, y =
number x1 = 0, yl

while (bl > 0) {
number q = al

std::tie(x, x1) = std::make_tuple(xl, x - q * x1);
std::tie(y, yl) = std::make_tuple(yl, vy - q * yl);
std::tie(al, bl) = std::make_tuple(bl, al - q * bl);

}

+ by

a, number b) {

/ bl;

return EEResult{al, x, y};

}

// x_1 = x_0 + i % (n

/ d), d

// Solve ax = b (mod n) for x_0
|

// solvable if and only +if: d

struct MLEResult {
bool solvable;
number x0;

i

gcd(a, n)
b

MLEResult modular_linear_equation_solver (number a, number b, number n)

{

EEResult r = exgcd(a, n);
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number d = r.d;

if (b % d == 0) {

return MLEResult{true, ((r.x * b / d) + n) % n};
} else {

return MLEResult{false, 0};

}

ETRER

typedef long long number;

// a ™ b mod n

number modular_exponentitaion(number a, number b, number n) {
number result = 1;
number temp = a % n;

while (b > 0) {
number current_digit = % 2

if (current_digit == 1) {
result = (result * temp) % n;

+
temp = (temp * temp) % n;

b /= 2;
}

return result;

CRT

#include <cstdlib>
#include <functional>
#include <numer-ic>
#include <tuple>
#include <vector>

typedef long long number;
// d = gcd(a, b) = ax + by

struct EEResult {
number d;




number x;
number y;

}s

EEResult exgcd(number a, number b) {
number x = 1, y = 0;

number x1 = 0, yl =1, al = a, bl = b;

while (bl > 0) {
number q = al / bl;
std::tie(x, x1) = std::make_tuple(xl, x - q * x1);
std::tie(y, yl) = std::make_tuple(yl, vy - q * yl);
std::tie(al, bl) = std::make_tuple(bl, al - g * bl);

}
return EEResult{al, x, y};
}
// Solve ax = b (mod n) for x_0
// x_i =x_0+1ix (n/ d), d= gcd(a, n)
// solvable if and only if: d | b

struct MLEResult {
bool solvable;
number x0;

}s

MLEResult modular_linear_equation_solver (number a, number b, number n)

{
EEResult r = exgcd(a, n);

number d = r.d;

if (b % d == 0) {
return MLEResult{true, ((r.x * b / d) + n) % n};
} else {
return MLEResult{false, 0};
}
}

// n =n_1n_2...n_k
// a = (a_lc_1 + a_2c_2 + ... + a_nc_n) mod n
struct CRTResult {

number a;

number n;

}s

// n_1, n_2, ..., n_k are pairwise relative prime

/] KR&FR4AE: x = a_i (mod n_i)# @: x = a (mod n)

CRTResult crt(std::vector<number> const &a_list,
std::vector<number> const &n_Tlist) {

number n = std::accumulate(std::begin(n_list), std::end(n_list), 1
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LL,
std: :multiplies<number>{});

number result = 0;

for (size_t i 0; i < n_list.size(); i++) {
number n_i = n_Tlist[i];
number m_i = n / n_i;

MLEResult r = modular_linear_equation_solver(m_i, 1, n_1i);
number c_i = (r.x0 % n * m_i % n) % n;

result = (result + (a_list[i] * c_i) % n) % n;

}
return CRTResult{result, n};
}
FrERTE
KMP

#include <string>
#include <vector>

#define MAX_STR_LEN 305
#define ALPHABET_LEN 30

/] WAqRTILE Y patternth fiqi F4&
class KMPMatcher {
public:
std::string pattern;
std::vector<size_t> pi;

explicit KMPMatcher(std::string const &pattern) {
this->pattern = pattern;

generate_pi();

}

void generate_pi() {
pi.resize(pattern.size() + 1, 0);

size_t q = 0;
for (size_t i = 1; i < pattern.size(); i++) {

while (q > 0 && pattern[i] != pattern[q]) {
q = pilal;
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}

if (pattern[i] == pattern[q]) {
qt+;

}
pili + 1] = q;
}

// O(N \sigma)
// verdict: E6 D
void generate_FA_transition_table(size_t delta[MAX_STR_LEN][
ALPHABET_LEN]) {
for (size_t 1 = 0; 1 < pi.size(); 1++) {
for (size_t next_ch = 'a'; next_ch <= 'z'; next_ch++) {
size_t q = 1;
while ((q > 0) && ((char)next_ch != pattern[q])) {
q = pilql;
}

if ((char)next_ch == pattern[q]) {
delta[l][next_ch - 'a'] = q + 1;
} else {
delta[l][next_ch - 'a'l = q;
}

}

std::vector<size_t> match(std::string const &to_match) {
std::vector<size_t> matched_pos_1list;

size_t q = 0;

for (size_t i = 0; i < to_match.size(); i++) {
while (q > 0 && to_match[i] != pattern[q]) {

q = pilal;

}

/] 0 TH, REAEWIQNFHABFERLT, T—IMRERHFHFE
pattern[q]

if (to_match[i] == pattern[q]) {
q++;

}

if (q == pattern.size()) {
matched_pos_Tlist.push_back(i + 1 - pattern.size());

q = pilq]l;
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return matched_pos_1list;
+s

int main(void) {
std::string pattern{"ababaca"};

KMPMatcher matcher{pattern};

return 0;

HEILE

#include <algorithm>
#include <cmath>
#include <vector>

#define MY_INFINITY (1LL << 60)
typedef long long number;
class Point {

public:

number x;
number y;

explicit constexpr Point(number a, number b) : x{a}, y{b} {};

friend Point operator-(Point const &left, Point const &right) {
return Point{left.x - right.x, left.y - right.y};
}

friend bool operator==(Point const &left, Point const &right) {
return (left.x == right.x) && (left.y == right.y);
}
}s

struct PointHash {
std::size_t operator() (Point const &k) const noexcept {
size_t right = (size_t)k.y;
right += 0x9e3779b97f4a7cl5;

right = ((right << 31) | (right >> (64 - 31)));

return ((size_t)k.x » right);
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+s

class Vector {

}s

public:

number x;
number y;

explicit constexpr Vector(number a, number b) : x{a}, y{b} {};
explicit constexpr Vector(Point const &point) : x{point.x}, y{point
-y} {};
explicit constexpr Vector(Point const &from, Point const &to)
x{to.x - from.x}, y{to.y - from.y} {};

friend Vector operator+(Vector const &left, Vector const &right) {
return Vector{left.x + right.x, left.y + right.y};
}

friend Vector operator-(Vector const &left, Vector const &right) {
return Vector{left.x - right.x, left.y - right.y};

}

friend Vector operator-(Vector const &self) {
return Vector{-self.x, -self.y};

}

friend number operatorx*(Vector const &left, Vector const &right) {
return left.x * right.x + left.y * right.y;

}

friend number operator”(Vector const &left, Vector const &right) {
return left.x * right.y - right.x * left.y;
}

double module() const {
return std::sqrt(this->x * this->x + this->y * this->y);
}

class Segment {

public:

Point from;
Point to;

explicit constexpr Segment(Point a, Point b) : from{a}, to{b} {};

Vector direction() const { return Vector{to.x - from.x, to.y - from

-Vl 3
Segment reversed() const { return Segment{to, from}; }

bool on_segment(Point p) const {
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Vector d = this->direction();
Vector d2 = Vector{p - this->from};

if ((d » d2) == 0) {
if (p.x >= std::min(from.x, to.x) &&
p.x <= std::max(from.x, to.x) &&
p.y >= std::min(from.y, to.y) &&
p.y <= std::max(from.y, to.y)) {
return true;

}

return false;

}

bool intersect(Segment const &s) const {
Vector this_direction = this->direction();
Vector s_direction = s.direction();

Vector dl1 Vector{s.from - this->from};
Vector d2 = Vector{s.from - this->to};
Vector d3 = Vector{this->from - s.from};
Vector d4 Vector{this->from - s.to};

number prol s_direction A di;
number pro2 = s_direction * d2;
number pro3 this_direction * d3;
number pro4 this_direction * d4;

if (((prol > O && pro2 < Q) || (prol < 0 && pro2 > 0)) &&
((pro3 > 0 && pro4 < 0) || (pro3 < 0 && pro4 > 0))) {
return true;

}

if (prol == 0 && s.on_segment(this->from)) {
return true;

}

if (pro2 == 0 && s.on_segment(this->to)) {
return true;

}

if (pro3 == 0 && on_segment(s.from)) {
return true;

}

if (pro4 == 0 && on_segment(s.to)) {
return true;

}




return false;
}s

/] %R AT
bool operator<(Point const &left, Point const &right) {
number cross_product = Vector{left} A Vector { right };
if (cross_product > 0) {
return true;
} else 1if (cross_product == 0) {
if (left.x > right.x) {
return false;
} else if (left.x < right.x) {
return true;
} else {
if (left.y > right.y) {
return false;
} else {
return true;
}
+
} else {
return false;
h;
}

/] % & xrpoint_listah A7 #l 4 #

/] BEX: FBAEL K

std::vector<Point> convex_hull(std::vector<Point> point_Llist) {
number min_y MY_INFINITY;
number min_x = MY_INFINITY;
auto origin_element = std::begin(point_list);

for (Point const &point : point_list) {
if (point.y < min_y) {
min_y = point.y;
}
}

for (auto iter = std::begin(point_list); iter != std::end(
point_list);
iter++) {
if (iter->y == min_y) {
if (iter->x < min_x) {
min_x = iter->x;
origin_element = -iter;

}

for (Point &point : point_list) {




point.x -= min_x;
point.y —-= min_y;

}

point_Llist.erase(origin_element);

std::sort(std::begin(point_list), std::end(point_1list));
std::vector<Point> stack;

stack.reserve(point_list.size());

stack.emplace_back(0, 0);
stack.push_back(point_list[0]);
stack.push_back(point_list[1]);

for (size_t i = 2; i < point_list.size(); i++) {
while (true) {
Point const &current_top = stack.back();

Point const &current_next_to_top = stack[stack.size() - 2];

Vector vl = Vector{current_next_to_top, current_top};
Vector v2 = Vector{current_next_to_top, point_1list[i]};

if ((vi A v2) > 0) {
break;

}

stack.pop_back();

if (stack.size() <= 1) {
break;
}
+

stack.push_back(point_list[i]);
}

return stack;

}

/] KAK (FH&BE, WH2x& B K E)
double length(std::vector<Point> const &convex_hull_list) {
double result = 0.0;

size_t len = convex_hull_list.size();
for (size_t i = 0; i < lenj i++) {
Point const &pl = convex_hull_1list[i];
Point const &p2 convex_hull_1list[(i + 1) % len];

Vector v{pl, p2};

result += v.module();
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}

return result;

}

/] k2 HEHR (EE2 x TMH)

/] E & # 4 Hdoublefr N2 7 i A & o] A !

number doubled_polygon_area(std::vector<Point> const &
sorted_convex_list) {
Point const &aux_ponint = xstd::begin(sorted_convex_list);

number doubled_area = 0;
size_t len = sorted_convex_list.size();
for (size_t i = 0; i < len; i++) {
Vector vl{aux_ponint, sorted_convex_Llist[i]};

Vector v2{aux_ponint, sorted_convex_Llist[(i + 1) % len]};

doubled_area += (vl * v2);

}
return std::abs(doubled_area);
}
Random
shuffle

#include <algorithm>

#include <random>

// 32 bit mersenne twister engine

auto const seed = std::random_device{}();

auto reng = std::mt19937{seed};

std::vector<int> v {0,1,2,3,4,5,6,7,8};
shuffle(begin(v)+2, begin(v)+7, reng);

for (int x : v) { cout << x <<'" '3 } // O 1 - 7 8

HhsH

#include <random>

// fixed seed

auto const seed = 123;

// Mersenne Twister random engine:
std::mt19937 urbg {seed};

// generate random ints ® [1,6]
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11
12

std::uniform_int_distribution<int> distrli {1, 6};

auto const valuel = distrl(urbg);

auto const value2 = distrl(urbg);

// generate random floats KW [-1.2,6.25)
std::uniform_real_distribution<float> distr2 {-1.2f, 6.25f};
auto const value3 = distr2(urbg);
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