
Contents

Template 2
单调队列 . 2
大顶堆 . 4
排序 . 6

归并排序 . 6
堆排序 . 7
快速排序 . 10

哈希 . 12
C++自定义哈希函数 . 15

最长不增子序列 . 15
并查集 . 16
最近公共祖先 . 17
图 . 19

DFS . 19
拓扑排序 . 21
DFS拓扑排序 . 22
DFS强连通分量 . 24
最小生成树 . 26
最短路 . 30
最大流 . 35

FFT . 43
多项式乘法 . 45
大整数乘法 . 49

数论 . 54
高精度 . 54
GCD . 58
线性同余方程 . 59
模下快速幂 . 60
CRT . 60

字符串匹配 . 62
KMP . 62

计算几何 . 64
Random . 69

shuffle . 69
均匀分布 . 69

1

Template

模数表：

1 2 3 4 5

1e6 1000003 1000033 1000037 1000621 1000621

1e9 1000000007 1000000009 1000000021 1000000993 1000001011

1e9 1000000007 1000000009 1000000021 1000000993 1000001011

1e14 100000000000031 100000000000067 100000000000097 100000000001623 100000000001647

单调队列

1 #include <cstdio>
2 #include <deque>
3 #include <vector>
4
5 class MonotoneQueue {
6 private:
7 struct QueueItem {
8 int data;
9 size_t idx;

10
11 explicit constexpr QueueItem(int data_, size_t idx_)
12 : data{data_}, idx{idx_} {};
13 };
14
15 std::deque<QueueItem> queue;
16 size_t window_length;
17 bool increasing;
18
19 size_t idx;
20
21 public:
22 explicit MonotoneQueue(size_t window_length_, bool increasing_)
23 : window_length{window_length_}, increasing{increasing_}, idx

{0} {}
24
25 void put(int data) {
26 idx++;
27
28 while (!queue.empty() && (idx - queue.front().idx) >=

window_length) {
29 queue.pop_front();

2

30 }
31
32 if (increasing) {
33 while (!queue.empty() && queue.back().data > data) {
34 queue.pop_back();
35 }
36 } else {
37 while (!queue.empty() && queue.back().data < data) {
38 queue.pop_back();
39 }
40 }
41
42 queue.emplace_back(data, idx);
43 }
44
45 int get() const { return queue.front().data; }
46 };
47
48 int main(void) {
49 size_t n, k;
50 n = k = 0;
51
52 std::scanf("%zu%zu", &n, &k);
53
54 std::vector<int> input_list;
55 input_list.reserve(n);
56
57 for (size_t i = 0; i < n; i++) {
58 int data = 0;
59 std::scanf("%d", &data);
60 input_list.push_back(data);
61 }
62
63 MonotoneQueue min_queue{k, true};
64 MonotoneQueue max_queue{k, false};
65
66 for (size_t i = 0; i < n; i++) {
67 min_queue.put(input_list[i]);
68
69 if (i >= (k - 1)) {
70 std::printf("%d ", min_queue.get());
71 }
72 }
73
74 std::putchar('\n');
75
76 for (size_t i = 0; i < n; i++) {
77 max_queue.put(input_list[i]);
78
79 if (i >= (k - 1)) {
80 std::printf("%d ", max_queue.get());

3

81 }
82 }
83
84 std::putchar('\n');
85
86 return 0;
87 }

大顶堆

1 #include <utility>
2 #include <vector>
3
4 typedef long long i64;
5
6 class Heap {
7 public:
8 std::vector<i64> heap;
9 size_t heap_size;

10
11 explicit Heap() { heap_size = 0; }
12
13 explicit Heap(std::vector<i64> const &num_list) {
14 heap = num_list;
15 heap_size = num_list.size();
16
17 if (num_list.size() >= 2) {
18 size_t idx = num_list.size() / 2 - 1;
19 for (size_t i = 0; i <= num_list.size() / 2 - 1; i++) {
20 max_heapify(idx);
21
22 idx--;
23 }
24 }
25 }
26
27 public:
28 i64 heap_maximum() { return heap[0]; }
29 i64 heap_extract_max() {
30 i64 max_value = heap[0];
31
32 heap[0] = heap[heap_size - 1];
33
34 max_heapify(0);
35
36 heap_size--;
37 return max_value;
38 }
39

4

40 void heap_increase_key(size_t i, i64 new_key) {
41 heap[i] = new_key;
42
43 while (i >= 1 && heap[parent(i)] < heap[i]) {
44 std::swap(heap[parent(i)], heap[i]);
45
46 i = parent(i);
47 }
48 }
49
50 void heap_insert(i64 key) {
51 heap.push_back(0);
52
53 heap_increase_key(heap_size - 1, key);
54 heap_size++;
55 }
56
57 private:
58 inline size_t left(size_t i) { return 2 * i + 1; }
59
60 inline size_t right(size_t i) { return 2 * i + 2; }
61
62 inline size_t parent(size_t i) { return (i - 1) / 2; }
63
64 void max_heapify(size_t i) {
65 while (1) {
66 size_t left_idx = left(i);
67 size_t right_idx = right(i);
68
69 size_t largest_idx = i;
70
71 if (left_idx < heap_size && heap[left_idx] > heap[i]) {
72 largest_idx = left_idx;
73 }
74
75 if (right_idx < heap_size && heap[right_idx] > heap[

largest_idx]) {
76 largest_idx = right_idx;
77 }
78
79 if (largest_idx != i) {
80 std::swap(heap[i], heap[largest_idx]);
81
82 i = largest_idx;
83 } else {
84 break;
85 }
86 }
87 }
88 };

5

排序

归并排序

1 #include <algorithm>
2 #include <cstdio>
3 #include <vector>
4
5 typedef long long i64;
6
7 void merge(std::vector<i64> &arr, size_t p, size_t q, size_t r);
8 void do_merge_sort(std::vector<i64> &arr, size_t p, size_t r);
9 void merge_sort(std::vector<i64> &arr);

10
11 int main(void) {
12 size_t n = 0;
13 std::scanf("%zu", &n);
14
15 std::vector<i64> num_list;
16
17 num_list.reserve(n);
18
19 for (size_t i = 0; i < n; i++) {
20 i64 num = 0;
21 std::scanf("%lld", &num);
22 num_list.push_back(num);
23 }
24
25 merge_sort(num_list);
26
27 for (i64 num : num_list) {
28 std::printf("%lld ", num);
29 }
30
31 std::putchar('\n');
32
33 return 0;
34 }
35
36 // merge sorted [p, q] and [q + 1, r]
37 void merge(std::vector<i64> &arr, size_t p, size_t q, size_t r) {
38 std::vector<i64> aux;
39 aux.reserve(r - p + 1);
40
41 size_t i = p;
42 size_t j = q + 1;
43
44 while ((i <= q) && (j <= r)) {
45 if (arr[i] <= arr[j]) {
46 aux.push_back(arr[i]);

6

47 i++;
48 } else {
49 aux.push_back(arr[j]);
50 j++;
51 }
52 }
53
54 while (i <= q) {
55 aux.push_back(arr[i]);
56 i++;
57 }
58
59 while (j <= r) {
60 aux.push_back(arr[j]);
61 j++;
62 }
63
64 std::copy(std::begin(aux), std::end(aux), std::begin(arr) + (long)p

);
65 }
66
67 void do_merge_sort(std::vector<i64> &arr, size_t p, size_t r) {
68 if (p == r) {
69 return;
70 }
71
72 size_t q = p + (r - p) / 2;
73
74 do_merge_sort(arr, p, q);
75 do_merge_sort(arr, q + 1, r);
76
77 merge(arr, p, q, r);
78 }
79
80 void merge_sort(std::vector<i64> &arr) {
81 if (arr.empty() || arr.size() == 1) {
82 return;
83 }
84
85 do_merge_sort(arr, 0, arr.size() - 1);
86 }

堆排序

1 #include <cstdio>
2 #include <utility>
3 #include <vector>
4
5 typedef long long i64;

7

6
7 class Heap {
8 public:
9 std::vector<i64> heap;

10 size_t heap_size;
11
12 explicit Heap() { heap_size = 0; }
13
14 explicit Heap(std::vector<i64> const &num_list) {
15 heap = num_list;
16 heap_size = num_list.size();
17
18 if (num_list.size() >= 2) {
19 size_t idx = num_list.size() / 2 - 1;
20 for (size_t i = 0; i <= num_list.size() / 2 - 1; i++) {
21 max_heapify(idx);
22
23 idx--;
24 }
25 }
26 }
27
28 public:
29 i64 heap_maximum() { return heap[0]; }
30 i64 heap_extract_max() {
31 i64 max_value = heap[0];
32
33 heap[0] = heap[heap_size - 1];
34
35 max_heapify(0);
36
37 heap_size--;
38 return max_value;
39 }
40
41 void heap_increase_key(size_t i, i64 new_key) {
42 heap[i] = new_key;
43
44 while (i >= 1 && heap[parent(i)] < heap[i]) {
45 std::swap(heap[parent(i)], heap[i]);
46
47 i = parent(i);
48 }
49 }
50
51 void heap_insert(i64 key) {
52 heap.push_back(0);
53
54 heap_increase_key(heap_size - 1, key);
55 heap_size++;
56 }

8

57
58 void max_heapify(size_t i) {
59 while (1) {
60 size_t left_idx = left(i);
61 size_t right_idx = right(i);
62
63 size_t largest_idx = i;
64
65 if (left_idx < heap_size && heap[left_idx] > heap[i]) {
66 largest_idx = left_idx;
67 }
68
69 if (right_idx < heap_size && heap[right_idx] > heap[

largest_idx]) {
70 largest_idx = right_idx;
71 }
72
73 if (largest_idx != i) {
74 std::swap(heap[i], heap[largest_idx]);
75
76 i = largest_idx;
77 } else {
78 break;
79 }
80 }
81 }
82
83 private:
84 inline size_t left(size_t i) { return 2 * i + 1; }
85
86 inline size_t right(size_t i) { return 2 * i + 2; }
87
88 inline size_t parent(size_t i) { return (i - 1) / 2; }
89 };
90
91 std::vector<i64> heap_sort(std::vector<i64> const &list);
92
93 int main(void) {
94 size_t n = 0;
95 std::scanf("%zu", &n);
96
97 std::vector<i64> num_list;
98
99 num_list.reserve(n);

100
101 for (size_t i = 0; i < n; i++) {
102 i64 num = 0;
103 std::scanf("%lld", &num);
104 num_list.push_back(num);
105 }
106

9

107 std::vector<i64> sorted = heap_sort(num_list);
108
109 for (i64 num : sorted) {
110 std::printf("%lld ", num);
111 }
112
113 std::putchar('\n');
114
115 return 0;
116 }
117
118 std::vector<i64> heap_sort(std::vector<i64> const &list) {
119 Heap heap{list};
120
121 if (list.empty()) {
122 return list;
123 }
124
125 for (size_t i = 0; i < list.size() - 1; i++) {
126 std::swap(heap.heap[0], heap.heap[list.size() - 1 - i]);
127
128 heap.heap_size--;
129
130 heap.max_heapify(0);
131 }
132
133 return heap.heap;
134 }

快速排序

1 #include <cstdio>
2 #include <random>
3 #include <vector>
4
5 typedef long long i64;
6
7 i64 partition(std::vector<i64> &list, i64 p, i64 r);
8 void do_quick_sort(std::vector<i64> &list, i64 p, i64 r);
9 void quick_sort(std::vector<i64> &list);

10 void random_permutation(std::vector<i64> &list);
11
12 int main(void) {
13 size_t n = 0;
14 std::scanf("%zu", &n);
15
16 std::vector<i64> num_list;
17
18 num_list.reserve(n);

10

19
20 for (size_t i = 0; i < n; i++) {
21 i64 num = 0;
22 std::scanf("%lld", &num);
23 num_list.push_back(num);
24 }
25
26 quick_sort(num_list);
27
28 for (i64 num : num_list) {
29 std::printf("%lld ", num);
30 }
31
32 std::putchar('\n');
33
34 return 0;
35 }
36
37 // partition range [p, r]
38 i64 partition(std::vector<i64> &list, i64 p, i64 r) {
39 i64 pivot = list[(size_t)r];
40
41 i64 i = p - 1;
42
43 for (i64 j = p; j <= r - 1; j++) {
44 if (list[(size_t)j] <= pivot) {
45 i++;
46
47 std::swap(list[(size_t)i], list[(size_t)j]);
48 }
49 }
50
51 std::swap(list[(size_t)i + 1], list[(size_t)r]);
52
53 return i + 1;
54 }
55
56 void do_quick_sort(std::vector<i64> &list, i64 p, i64 r) {
57 if (p < r) {
58 i64 q = partition(list, p, r);
59
60 do_quick_sort(list, p, q - 1);
61 do_quick_sort(list, q + 1, r);
62 }
63 }
64
65 void quick_sort(std::vector<i64> &list) {
66 if (list.empty()) {
67 return;
68 }
69 random_permutation(list);

11

70 do_quick_sort(list, 0, (i64)(list.size() - 1));
71 }
72
73 void random_permutation(std::vector<i64> &list) {
74 auto const seed = 84841984;
75
76 std::mt19937 urbg{seed};
77
78 for (size_t i = 0; i < list.size(); i++) {
79 std::uniform_int_distribution<size_t> distr{i, list.size() -

1};
80
81 std::swap(list[i], list[distr(urbg)]);
82 }
83 }

哈希

1 #include <stddef.h>
2 #include <stdint.h>
3 #include <string.h>
4
5 #define SIPHASH_COMPRESSION_ROUND 2
6 #define SIPHASH_FINALIZATION_ROUND 4
7
8 #define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b))))
9

10 uint64_t siphash(uint64_t k_0, uint64_t k_1, void *msg, size_t msg_len)
;

11
12 uint64_t siphash(uint64_t k_0, uint64_t k_1, void *msg, size_t msg_len)

{
13 uint64_t v_0 = k_0 ^ 0x736f6d6570736575;
14 uint64_t v_1 = k_1 ^ 0x646f72616e646f6d;
15 uint64_t v_2 = k_0 ^ 0x6c7967656e657261;
16 uint64_t v_3 = k_1 ^ 0x7465646279746573;
17
18 size_t normal_count = msg_len / 8;
19
20 uint64_t *current_word_ptr = (uint64_t *)msg;
21
22 for (size_t i = 0; i < normal_count; i++) {
23 uint64_t current_word = *current_word_ptr;
24
25 v_3 ^= current_word;
26
27 for (int j = 0; j < SIPHASH_COMPRESSION_ROUND; j++) {
28 // SipRound
29 {

12

30 v_0 += v_1;
31 v_2 += v_3;
32
33 v_1 = ROTL(v_1, 13);
34 v_3 = ROTL(v_3, 16);
35
36 v_1 ^= v_0;
37 v_3 ^= v_2;
38
39 v_0 = ROTL(v_0, 32);
40
41 v_2 += v_1;
42 v_0 += v_3;
43
44 v_1 = ROTL(v_1, 17);
45 v_3 = ROTL(v_3, 21);
46
47 v_1 ^= v_2;
48 v_3 ^= v_0;
49
50 v_2 = ROTL(v_2, 32);
51 }
52 }
53
54 v_0 ^= current_word;
55
56 current_word_ptr++;
57 }
58
59 uint64_t final_word = 0;
60
61 memcpy(&final_word, current_word_ptr, msg_len - normal_count * 8);
62
63 final_word |= (msg_len % 256) << 56;
64
65 v_3 ^= final_word;
66
67 for (int j = 0; j < SIPHASH_COMPRESSION_ROUND; j++) {
68 // SipRound
69 {
70 v_0 += v_1;
71 v_2 += v_3;
72
73 v_1 = ROTL(v_1, 13);
74 v_3 = ROTL(v_3, 16);
75
76 v_1 ^= v_0;
77 v_3 ^= v_2;
78
79 v_0 = ROTL(v_0, 32);
80

13

81 v_2 += v_1;
82 v_0 += v_3;
83
84 v_1 = ROTL(v_1, 17);
85 v_3 = ROTL(v_3, 21);
86
87 v_1 ^= v_2;
88 v_3 ^= v_0;
89
90 v_2 = ROTL(v_2, 32);
91 }
92 }
93
94 v_0 ^= final_word;
95
96 v_2 ^= 0xff;
97
98 for (int j = 0; j < SIPHASH_FINALIZATION_ROUND; j++) {
99 // SipRound

100 {
101 v_0 += v_1;
102 v_2 += v_3;
103
104 v_1 = ROTL(v_1, 13);
105 v_3 = ROTL(v_3, 16);
106
107 v_1 ^= v_0;
108 v_3 ^= v_2;
109
110 v_0 = ROTL(v_0, 32);
111
112 v_2 += v_1;
113 v_0 += v_3;
114
115 v_1 = ROTL(v_1, 17);
116 v_3 = ROTL(v_3, 21);
117
118 v_1 ^= v_2;
119 v_3 ^= v_0;
120
121 v_2 = ROTL(v_2, 32);
122 }
123 }
124
125 return v_0 ^ v_1 ^ v_2 ^ v_3;
126 }
127
128 int main(void) {
129
130 uint64_t k_0 = 0x0706050403020100;
131 uint64_t k_1 = 0x0f0e0d0c0b0a0908;

14

132
133 uint8_t buf[15] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
134 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e};
135
136 uint64_t result = siphash(k_0, k_1, buf, 15);
137 uint64_t expected = 0xa129ca6149be45e5;
138
139 return 0;
140 }

C++自定义哈希函数

1 struct TM_hash {
2 // 32bit integer hash by T. Mueller
3 constexpr std::size_t
4 operator () (std::uint32_t k) const noexcept {
5 k = ((k >> 16) ^ k) * 0x45d9f3b;
6 k = ((k >> 16) ^ k) * 0x45d9f3b;
7 k = ((k >> 16) ^ k);
8 return k;
9 }

10 };
11
12 std::unordered_set<std::uint32_t,TM_hash> s;

最长不增子序列

1 // 最长不增子序列，动态规划+二分，O(NlogN)
2 // 若要求最长不减子序列，将数组中所有元素取负即可
3 // 若要求最长递减子序列（即，不能出现相等的情况），在调用二分查找时将

val + 1即可
4 // 注意最长不增子序列的长度为dp中的最大值
5 #include <vector>
6
7 #define MY_INFINITY (1LL << 60)
8
9 typedef long long i64;

10 i64 get_length(std::vector<i64> const &list, i64 left, i64 right, i64
val);

11 std::vector<i64> calc_dp(std::vector<i64> const &num_list);
12
13 std::vector<i64> calc_dp(std::vector<i64> const &num_list) {
14 std::vector<i64> dp;
15 dp.resize(num_list.size(), 0);
16
17 std::vector<i64> max_last_element_by_length;
18

15

19 max_last_element_by_length.resize(num_list.size() + 1, -MY_INFINITY
);

20
21 max_last_element_by_length[0] = MY_INFINITY;
22
23 dp[0] = 1;
24 max_last_element_by_length[1] = num_list[0];
25
26 for (size_t i = 1; i < num_list.size(); i++) {
27 i64 prev_max_length =
28 get_length(max_last_element_by_length, 1, (i64)i, num_list[

i]);
29
30 dp[i] = prev_max_length + 1;
31
32 if (max_last_element_by_length[(size_t)dp[i]] < num_list[i]) {
33 max_last_element_by_length[(size_t)dp[i]] = num_list[i];
34 }
35 }
36
37 return dp;
38 }
39
40 i64 get_length(std::vector<i64> const &list, i64 left, i64 right, i64

val) {
41 while (left <= right) {
42 i64 mid = (left + right) / 2;
43
44 if (list[(size_t)mid] < val) {
45 right = mid - 1;
46 } else if (list[(size_t)mid] > val) {
47 left = mid + 1;
48 } else {
49 left = mid + 1;
50 }
51 }
52
53 return right;
54 }

并查集

1 #include <cstddef>
2 #include <numeric>
3 #include <vector>
4
5 using std::size_t;
6
7 struct DisjointSet {

16

8 std::vector<size_t> set;
9 std::vector<size_t> set_size;

10
11 explicit DisjointSet(size_t size) {
12 set.resize(size);
13 set_size.resize(size, 1);
14 std::iota(std::begin(set), std::end(set), 0);
15 }
16
17 size_t find(size_t x) {
18 std::vector<size_t> path(16);
19
20 while (set[x] != x) {
21 path.push_back(x);
22 x = set[x];
23 };
24
25 for (size_t node : path) {
26 set[node] = x;
27 }
28
29 return x;
30 }
31
32 void unite(size_t x, size_t y) {
33 size_t x_root = find(x);
34 size_t y_root = find(y);
35
36 if (x_root == y_root) {
37 return;
38 }
39
40 if (set_size[x_root] < set_size[y_root]) {
41 set[x_root] = y_root;
42 set_size[y_root] += set_size[x_root];
43 } else {
44 set[y_root] = x_root;
45 set_size[x_root] += set_size[y_root];
46 }
47 }
48 };

最近公共祖先

1 #include <array>
2 #include <cstdio>
3 #include <utility>
4 #include <vector>
5

17

6 class LCA {
7 public:
8 std::vector<std::array<size_t, 32>> parent_info;
9 std::vector<size_t> node_depth;

10
11 private:
12 std::vector<std::vector<size_t>> const &tree;
13 size_t const tree_root;
14
15 public:
16 explicit LCA(std::vector<std::vector<size_t>> const &tree, size_t

root)
17 : tree{tree}, tree_root{root} {
18 parent_info.resize(tree.size());
19 node_depth.resize(tree.size());
20
21 dfs(tree_root, 0);
22 }
23
24 public:
25 size_t lca(size_t u, size_t v) {
26 if (node_depth[u] > node_depth[v]) {
27 std::swap(u, v);
28 }
29
30 size_t depth_delta = node_depth[v] - node_depth[u];
31
32 size_t i = 0;
33
34 while (depth_delta > 0) {
35 size_t digit = depth_delta & 1;
36 depth_delta >>= 1;
37
38 if (digit == 1) {
39 v = parent_info[v][i];
40 }
41
42 i++;
43 }
44 while (u != v) {
45 for (i = 0; i < 32; i++) {
46 size_t idx = 31 - i;
47
48 if (parent_info[u][idx] != parent_info[v][idx]) {
49 u = parent_info[u][idx];
50 v = parent_info[v][idx];
51
52 break;
53 }
54 }
55 }

18

56
57 return u;
58 }
59
60 private:
61 void dfs(size_t root, size_t depth) {
62 node_depth[root] = depth;
63
64 for (size_t child_node : tree[root]) {
65 parent_info[child_node][0] = root;
66
67 for (size_t i = 1; i < 32; i++) {
68 size_t p = parent_info[child_node][i - 1];
69
70 // 2 ^ i = 2 ^ (i - 1) + 2 ^ (i - 1)
71 parent_info[child_node][i] = parent_info[p][i - 1];
72 }
73
74 dfs(child_node, depth + 1);
75 }
76 }
77 };

图

DFS

1 #include <cstdio>
2 #include <vector>
3
4 size_t dfs_time = 0;
5 std::vector<std::vector<size_t>> graph;
6
7 std::vector<int> visited;
8 std::vector<size_t> parent;
9 std::vector<size_t> discover_time;

10 std::vector<size_t> finish_time;
11
12 void dfs_visit(size_t source_node) {
13 dfs_time++;
14 discover_time[source_node] = dfs_time;
15 visited[source_node] = 1;
16
17 for (size_t adjacent_node : graph[source_node]) {
18 if (visited[adjacent_node] == 0) {
19 parent[adjacent_node] = source_node;
20 discover_time[adjacent_node] = dfs_time;
21 dfs_visit(adjacent_node);

19

22 }
23 }
24
25 dfs_time++;
26 finish_time[source_node] = dfs_time;
27 }
28
29 void dfs_graph() {
30 dfs_time = 0;
31
32 visited.assign(graph.size(), 0);
33 parent.assign(graph.size(), 0);
34 discover_time.assign(graph.size(), 0);
35 finish_time.assign(graph.size(), 0);
36
37 for (size_t i = 1; i < graph.size(); i++) {
38 if (visited[i] == 0) {
39 dfs_visit(i);
40 }
41 }
42 }
43
44 int main(void) {
45 size_t n, m;
46 n = m = 0;
47 std::scanf("%zu%zu", &n, &m);
48
49 graph.resize(n + 1);
50
51 for (size_t i = 0; i < m; i++) {
52 size_t from_node, to_node;
53 from_node = to_node = 0;
54
55 std::scanf("%zu%zu", &from_node, &to_node);
56
57 graph[from_node].push_back(to_node);
58 }
59
60 dfs_graph();
61
62 for (size_t i = 1; i <= n; i++) {
63 std::printf("%zu ", parent[i]);
64 }
65
66 std::putchar('\n');
67
68 for (size_t i = 1; i <= n; i++) {
69 std::printf("%zu ", discover_time[i]);
70 }
71
72 std::putchar('\n');

20

73
74 for (size_t i = 1; i <= n; i++) {
75 std::printf("%zu ", finish_time[i]);
76 }
77
78 std::putchar('\n');
79
80 return 0;
81 }

拓扑排序

1 #include <queue>
2 #include <vector>
3
4 struct TopoResult {
5 int result_code;
6 std::vector<size_t> result;
7 };
8
9 // 0 下标

10 // Sorted sequence cannot be
11 // determined，表示拓扑排序不唯一（条件：任意时刻入度为0的顶点的集合的

元素个数大于1）
12
13 TopoResult topo_sort(std::vector<std::vector<size_t>> const &graph) {
14 // 0 -> Sorted sequence determined
15 // 1 -> Inconsistency found
16 // 2 -> Sorted sequence cannot be determined.
17 int result_code = 0;
18 std::vector<size_t> result;
19 result.reserve(graph.size());
20
21 std::vector<size_t> in_count;
22 in_count.resize(graph.size(), 0);
23
24 for (std::vector<size_t> const &out_list : graph) {
25 for (size_t out_node : out_list) {
26 in_count[out_node]++;
27 }
28 }
29
30 std::queue<size_t> node_queue;
31
32 for (size_t i = 0; i < graph.size(); i++) {
33 if (in_count[i] == 0) {
34 node_queue.push(i);
35 }
36 }

21

37
38 if (node_queue.size() > 1) {
39 result_code = 2;
40 }
41
42 while (!node_queue.empty()) {
43 if (node_queue.size() > 1) {
44 result_code = 2;
45 }
46 size_t current_node = node_queue.front();
47 node_queue.pop();
48
49 result.push_back(current_node);
50
51 for (size_t other_node : graph[current_node]) {
52 if (in_count[other_node] == 1) {
53 node_queue.push(other_node);
54 }
55
56 in_count[other_node]--;
57 }
58 }
59
60 if (result.size() < graph.size()) {
61 result_code = 1;
62 }
63
64 TopoResult r = {result_code, result};
65
66 return r;
67 }

DFS拓扑排序

1 #include <algorithm>
2 #include <cstdio>
3 #include <vector>
4
5 size_t dfs_time = 0;
6 std::vector<std::vector<size_t>> graph;
7
8 std::vector<int> visited;
9 std::vector<size_t> parent;

10 std::vector<size_t> discover_time;
11 std::vector<size_t> finish_time;
12 std::vector<size_t> topo_list;
13
14 void dfs_visit(size_t source_node) {
15 dfs_time++;

22

16 discover_time[source_node] = dfs_time;
17 visited[source_node] = 1;
18
19 for (size_t adjacent_node : graph[source_node]) {
20 if (visited[adjacent_node] == 0) {
21 parent[adjacent_node] = source_node;
22 discover_time[adjacent_node] = dfs_time;
23 dfs_visit(adjacent_node);
24 }
25 }
26
27 dfs_time++;
28 finish_time[source_node] = dfs_time;
29
30 topo_list.push_back(source_node);
31 }
32
33 void dfs_graph() {
34 dfs_time = 0;
35
36 visited.assign(graph.size(), 0);
37 parent.assign(graph.size(), 0);
38 discover_time.assign(graph.size(), 0);
39 finish_time.assign(graph.size(), 0);
40 topo_list.resize(0);
41
42 for (size_t i = 1; i < graph.size(); i++) {
43 if (visited[i] == 0) {
44 dfs_visit(i);
45 }
46 }
47
48 std::reverse(std::begin(topo_list), std::end(topo_list));
49 }
50
51 int main(void) {
52 size_t N = 0;
53
54 std::scanf("%zu", &N);
55
56 graph.resize(N + 1);
57
58 for (size_t i = 1; i <= N; i++) {
59 size_t a = 0;
60
61 while (std::scanf("%zu", &a) == 1) {
62 if (a == 0) {
63 break;
64 }
65
66 graph[i].push_back(a);

23

67 }
68 }
69
70 dfs_graph();
71
72 for (size_t node : topo_list) {
73 std::printf("%zu ", node);
74 }
75
76 std::putchar('\n');
77
78 return 0;
79 }

DFS强连通分量

1 #include <algorithm>
2 #include <cstdio>
3 #include <vector>
4
5 size_t dfs_time;
6 std::vector<int> visited;
7 std::vector<size_t> finish_order;
8 std::vector<std::vector<size_t>> graph;
9 std::vector<std::vector<size_t>> reversed_graph;

10 std::vector<std::vector<size_t>> scc_by_node;
11
12 void dfs_pass1();
13 void dfs_visit_pass1(size_t source_node);
14 void dfs_pass2();
15 void dfs_visit_pass2(size_t source_node, size_t tree_root);
16 void generate_reverse_graph();
17
18 int main(void) {
19 size_t n, m;
20 n = m = 0;
21
22 std::scanf("%zu%zu", &n, &m);
23
24 graph.resize(n + 1);
25
26 for (size_t i = 0; i < m; i++) {
27 size_t from_node, to_node;
28 from_node = to_node = 0;
29
30 std::scanf("%zu%zu", &from_node, &to_node);
31
32 graph[from_node].push_back(to_node);
33 }

24

34
35 generate_reverse_graph();
36 dfs_pass1();
37 dfs_pass2();
38
39 for (size_t i = 1; i <= n; i++) {
40 for (size_t scc_node : scc_by_node[i]) {
41 std::printf("%zu ", scc_node);
42 }
43 if (!scc_by_node[i].empty()) {
44 std::putchar('\n');
45 }
46 }
47
48 return 0;
49 }
50
51 void dfs_pass1() {
52 dfs_time = 0;
53 visited.assign(graph.size(), 0);
54 finish_order.clear();
55
56 for (size_t i = 0; i < graph.size(); i++) {
57 if (visited[i] == 0) {
58 dfs_visit_pass1(i);
59 }
60 }
61
62 std::reverse(std::begin(finish_order), std::end(finish_order));
63 }
64
65 void dfs_visit_pass1(size_t source_node) {
66 dfs_time++;
67 visited[source_node] = 1;
68
69 for (size_t adjacent_node : graph[source_node]) {
70 if (visited[adjacent_node] == 0) {
71 dfs_visit_pass1(adjacent_node);
72 }
73 }
74
75 dfs_time++;
76
77 finish_order.push_back(source_node);
78 }
79
80 void dfs_pass2() {
81 visited.assign(graph.size(), 0);
82 scc_by_node.resize(graph.size());
83
84 for (size_t node : finish_order) {

25

85 if (visited[node] == 0) {
86 dfs_visit_pass2(node, node);
87 }
88 }
89 }
90
91 void dfs_visit_pass2(size_t source_node, size_t tree_root) {
92 visited[source_node] = 1;
93 scc_by_node[tree_root].push_back(source_node);
94
95 for (size_t adjacent_node : reversed_graph[source_node]) {
96 if (visited[adjacent_node] == 0) {
97 dfs_visit_pass2(adjacent_node, tree_root);
98 }
99 }

100 }
101
102 void generate_reverse_graph() {
103 reversed_graph.resize(graph.size());
104
105 for (size_t i = 1; i < graph.size(); i++) {
106 for (size_t adjacent_node : graph[i]) {
107 reversed_graph[adjacent_node].push_back(i);
108 }
109 }
110 }

最小生成树

Kruskal
1 #include <algorithm>
2 #include <numeric>
3 #include <vector>
4
5 struct DisjointSet {
6 std::vector<size_t> set;
7 std::vector<size_t> set_size;
8
9 explicit DisjointSet(size_t size) {

10 set.resize(size);
11 set_size.resize(size, 1);
12 std::iota(std::begin(set), std::end(set), 0);
13 }
14
15 size_t find(size_t x) {
16 std::vector<size_t> path(16);
17
18 while (set[x] != x) {
19 path.push_back(x);
20 x = set[x];

26

21 };
22
23 for (size_t node : path) {
24 set[node] = x;
25 }
26
27 return x;
28 }
29
30 void unite(size_t x, size_t y) {
31 size_t x_root = find(x);
32 size_t y_root = find(y);
33
34 if (x_root == y_root) {
35 return;
36 }
37
38 if (set_size[x_root] < set_size[y_root]) {
39 set[x_root] = y_root;
40 set_size[y_root] += set_size[x_root];
41 } else {
42 set[y_root] = x_root;
43 set_size[x_root] += set_size[y_root];
44 }
45 }
46 };
47
48 // 1 下标
49
50 struct Edge {
51 size_t from;
52 size_t to;
53 int weight;
54
55 explicit constexpr Edge(size_t from_, size_t to_, int weight_)
56 : from{from_}, to{to_}, weight{weight_} {};
57 };
58
59 // 副作用：传入的edge_list将被排序
60
61 std::vector<Edge> Kruskal(std::vector<Edge> &edge_list, size_t

node_count) {
62 std::sort(std::begin(edge_list), std::end(edge_list),
63 [](Edge const &a, Edge const &b) { return a.weight < b.

weight; });
64
65 DisjointSet set{node_count + 1};
66
67 std::vector<Edge> result;
68
69 for (Edge const &edge : edge_list) {

27

70 size_t from = edge.from;
71 size_t to = edge.to;
72
73 size_t from_root = set.find(from);
74 size_t to_root = set.find(to);
75
76 if (from_root != to_root) {
77 result.push_back(edge);
78 set.unite(from_root, to_root);
79 }
80
81 if (result.size() == (node_count - 1)) {
82 break;
83 }
84 }
85
86 return result;
87 }

Prim
1 #include <queue>
2 #include <vector>
3
4 typedef long long i64;
5
6 // 顶点1下标，边1下标
7
8 struct Edge {
9 size_t from;

10 size_t to;
11 i64 weight;
12
13 explicit constexpr Edge(size_t from_, size_t to_, i64 weight_)
14 : from{from_}, to{to_}, weight{weight_} {};
15 };
16
17 struct NodeInfo {
18 size_t node;
19 size_t parent;
20 size_t min_weight_edge_id;
21 i64 min_weight_to_tree;
22
23 explicit constexpr NodeInfo(size_t node_, size_t parent_,
24 size_t min_weight_edge_id_, i64 weight_

)
25 : node{node_}, parent{parent_}, min_weight_edge_id{

min_weight_edge_id_},
26 min_weight_to_tree{weight_} {};
27
28 friend bool operator<(NodeInfo const &left, NodeInfo const &right)

28

{
29 return left.min_weight_to_tree > right.min_weight_to_tree;
30 }
31 };
32
33 std::vector<Edge> Prim(std::vector<std::vector<Edge>> const &graph) {
34 std::vector<int> visited;
35 visited.resize(graph.size(), 0);
36
37 std::vector<Edge> result;
38 result.reserve(graph.size() - 1);
39
40 std::priority_queue<NodeInfo> node_queue;
41
42 visited[1] = 1;
43
44 for (size_t i = 0; i < graph[1].size(); i++) {
45 size_t target_node = graph[1][i].to;
46 i64 weight = graph[1][i].weight;
47 node_queue.emplace(target_node, 1, i, weight);
48 }
49
50 while (!node_queue.empty()) {
51 NodeInfo next_node_info = node_queue.top();
52 node_queue.pop();
53
54 if (visited[next_node_info.node] == 0) {
55 visited[next_node_info.node] = 1;
56
57 result.push_back(graph[next_node_info.parent]
58 [next_node_info.min_weight_edge_id]);
59
60 for (size_t i = 0; i < graph[next_node_info.node].size(); i

++) {
61 size_t target_node = graph[next_node_info.node][i].to;
62 i64 weight = graph[next_node_info.node][i].weight;
63 node_queue.emplace(target_node, next_node_info.node, i,

weight);
64 }
65 }
66
67 if (result.size() == graph.size() - 1) {
68 break;
69 }
70 }
71
72 return result;
73 }

29

最短路

BF
1 #include <vector>
2
3 #define MY_INFINITY (1LL << 61)
4
5 typedef long long i64;
6
7 struct Edge {
8 size_t to;
9 i64 weight;

10
11 explicit constexpr Edge(size_t to_, i64 weight_)
12 : to{to_}, weight{weight_} {};
13 };
14
15 struct BFResult {
16 bool valid;
17 std::vector<i64> shortest_distance;
18 std::vector<size_t> parent;
19 };
20
21 BFResult BF(std::vector<std::vector<Edge>> const &graph, size_t

source_node) {
22 bool valid = true;
23 std::vector<i64> shortest_distance;
24 std::vector<size_t> parent;
25
26 shortest_distance.resize(graph.size(), MY_INFINITY);
27 parent.resize(graph.size(), 0);
28
29 shortest_distance[source_node] = 0;
30
31 for (size_t i = 0; i < graph.size() - 1; i++) {
32 for (size_t from_node = 1; from_node < graph.size(); from_node

++) {
33 for (Edge const &edge : graph[from_node]) {
34 size_t to_node = edge.to;
35
36 if (shortest_distance[from_node] + edge.weight <
37 shortest_distance[to_node]) {
38 shortest_distance[to_node] =
39 shortest_distance[from_node] + edge.weight;
40 parent[to_node] = from_node;
41 }
42 }
43 }
44 }
45
46 for (size_t from_node = 1; from_node < graph.size(); from_node++) {
47 for (Edge const &edge : graph[from_node]) {

30

48 if (shortest_distance[from_node] + edge.weight <
49 shortest_distance[edge.to]) {
50 valid = false;
51 break;
52 }
53 }
54
55 if (!valid) {
56 break;
57 }
58 }
59
60 return {valid, shortest_distance, parent};
61 }

有向无环图
1 #include <queue>
2 #include <vector>
3
4 #define MY_INFINITY (1LL << 61)
5
6 typedef long long i64;
7
8 struct Edge {
9 size_t to;

10 i64 weight;
11
12 explicit constexpr Edge(size_t to_, i64 weight_)
13 : to{to_}, weight{weight_} {};
14 };
15
16 struct TopoResult {
17 int result_code;
18 std::vector<size_t> result;
19 };
20
21 struct DistanceResult {
22 std::vector<i64> shortest_distance;
23 std::vector<size_t> parent;
24 };
25
26 TopoResult topo_sort(std::vector<std::vector<Edge>> const &graph);
27 DistanceResult DAGShortestPath(std::vector<std::vector<Edge>> const &

graph,
28 size_t source_node);
29
30 // Sorted sequence cannot be
31 // determined，表示拓扑排序不唯一（条件：任意时刻入度为0的顶点的集合的

元素个数大于1）
32

31

33 TopoResult topo_sort(std::vector<std::vector<Edge>> const &graph) {
34 // 0 -> Sorted sequence determined
35 // 1 -> Inconsistency found
36 // 2 -> Sorted sequence cannot be determined.
37 int result_code = 0;
38 std::vector<size_t> result;
39 result.reserve(graph.size());
40
41 std::vector<size_t> in_count;
42 in_count.resize(graph.size(), 0);
43
44 for (std::vector<Edge> const &out_list : graph) {
45 for (Edge const &edge : out_list) {
46 in_count[edge.to]++;
47 }
48 }
49
50 std::queue<size_t> node_queue;
51
52 for (size_t i = 0; i < graph.size(); i++) {
53 if (in_count[i] == 0) {
54 node_queue.push(i);
55 }
56 }
57
58 if (node_queue.size() > 1) {
59 result_code = 2;
60 }
61
62 while (!node_queue.empty()) {
63 if (node_queue.size() > 1) {
64 result_code = 2;
65 }
66 size_t current_node = node_queue.front();
67 node_queue.pop();
68
69 result.push_back(current_node);
70
71 for (Edge const &edge : graph[current_node]) {
72 size_t other_node = edge.to;
73
74 if (in_count[other_node] == 1) {
75 node_queue.push(other_node);
76 }
77
78 in_count[other_node]--;
79 }
80 }
81
82 if (result.size() < graph.size()) {
83 result_code = 1;

32

84 }
85
86 TopoResult r = {result_code, result};
87
88 return r;
89 }
90
91 DistanceResult DAGShortestPath(std::vector<std::vector<Edge>> const &

graph,
92 size_t source_node) {
93 std::vector<i64> distance;
94 std::vector<size_t> parent;
95
96 TopoResult topo_result = topo_sort(graph);
97
98 std::vector<size_t> topo_list = topo_result.result;
99

100 distance.resize(graph.size(), MY_INFINITY);
101 parent.resize(graph.size(), 0);
102
103 distance[source_node] = 0;
104
105 for (size_t from_node : topo_list) {
106 for (Edge const &edge : graph[from_node]) {
107 size_t to_node = edge.to;
108
109 if (distance[from_node] + edge.weight < distance[to_node])

{
110 distance[to_node] = distance[from_node] + edge.weight;
111 parent[to_node] = from_node;
112 }
113 }
114 }
115
116 return {distance, parent};
117 }

Dijkstra
1 #include <cstddef>
2 #include <queue>
3 #include <vector>
4
5 #define MY_INFINITY (1LL << 60)
6
7 typedef long long i64;
8
9 struct Edge {

10 size_t to;
11 i64 weight;
12

33

13 explicit constexpr Edge(size_t to_, i64 weight_)
14 : to{to_}, weight{weight_} {}
15 };
16
17 struct NodeInfo {
18 size_t node;
19 i64 distance;
20
21 friend bool operator<(NodeInfo const &left, NodeInfo const &right)

{
22 return left.distance > right.distance;
23 }
24
25 explicit constexpr NodeInfo(size_t node_, i64 distance_)
26 : node{node_}, distance{distance_} {}
27 };
28
29 std::vector<i64> dijkstra(std::vector<std::vector<Edge>> const &

node_to_edges,
30 size_t source_node) {
31 std::vector<i64> result;
32 std::vector<int> visited;
33
34 result.resize(node_to_edges.size(), MY_INFINITY);
35 visited.resize(node_to_edges.size(), 0);
36
37 std::priority_queue<NodeInfo> node_queue;
38
39 result[source_node] = 0;
40 node_queue.emplace(source_node, 0);
41
42 while (!node_queue.empty()) {
43 NodeInfo current_node_info = node_queue.top();
44
45 node_queue.pop();
46
47 if (visited[current_node_info.node] == 1) {
48 continue;
49 }
50
51 for (Edge const &edge : node_to_edges[current_node_info.node])

{
52 size_t other_node = edge.to;
53
54 if (result[other_node] >
55 result[current_node_info.node] + edge.weight) {
56 result[other_node] =
57 result[current_node_info.node] + edge.weight;
58 node_queue.emplace(other_node, result[other_node]);
59 }
60 }

34

61
62 visited[current_node_info.node] = 1;
63 }
64
65 return result;
66 }

最大流

EK
1 // O(V(E^2))
2 // 处理了反平行边、重边、自环
3 // 反平行边：新建节点
4 // 重边：容量相加
5 // 自环：直接移除
6
7 #include <cstdio>
8 #include <cstring>
9 #include <queue>

10 #include <vector>
11
12 #define MAX_NODE 2005
13 #define INFINITY (1LL << 60)
14
15 typedef long long i64;
16
17 i64 residual_graph[MAX_NODE][MAX_NODE];
18
19 struct Edge {
20 size_t to;
21 i64 weight;
22
23 explicit constexpr Edge(size_t to_, i64 weight_)
24 : to{to_}, weight{weight_} {}
25 };
26
27 class EK {
28 public:
29 size_t node_count;
30
31 private:
32 std::vector<std::vector<size_t>> node_to_edges;
33
34 public:
35 explicit EK(std::vector<std::vector<Edge>> const &graph) {
36 std::memset(residual_graph, 0, sizeof(residual_graph));
37 node_count = graph.size() - 1;
38 node_to_edges.resize(graph.size());
39
40 for (size_t from_node = 0; from_node < graph.size(); from_node

35

++) {
41 for (Edge const &edge : graph[from_node]) {
42 size_t to_node = edge.to;
43 i64 weight = edge.weight;
44
45 // antiparallel edge exists
46 // parallel edges are allowed
47 if (residual_graph[to_node][from_node] != 0) {
48 node_count++;
49
50 residual_graph[from_node][node_count] += weight;
51 residual_graph[node_count][to_node] += weight;
52
53 if (node_count > node_to_edges.size() - 1) {
54 node_to_edges.resize(2 * node_count);
55 }
56
57 // 注意须在node_to_edges（对应残余图）中建立反向边
58 node_to_edges[from_node].push_back(node_count);
59 node_to_edges[node_count].push_back(from_node);
60 node_to_edges[node_count].push_back(to_node);
61 node_to_edges[to_node].push_back(node_count);
62 } else {
63 residual_graph[from_node][to_node] += weight;
64 node_to_edges[from_node].push_back(to_node);
65 node_to_edges[to_node].push_back(from_node);
66 }
67 }
68 }
69 // remove self loop
70
71 for (size_t i = 0; i <= node_count; i++) {
72 residual_graph[i][i] = 0;
73 }
74 }
75
76 i64 max_flow(size_t source_node, size_t target_node) {
77 i64 max_flow = 0;
78
79 while (true) {
80 i64 augment = rg_bfs(source_node, target_node);
81
82 // std::printf("augment: %lld\n", augment);
83
84 if (augment == 0) {
85 break;
86 }
87
88 max_flow += augment;
89 }
90

36

91 return max_flow;
92 }
93
94 private:
95 i64 rg_bfs(size_t from_node, size_t to_node) {
96 std::vector<int> visited;
97
98 visited.resize(node_count + 1, 0);
99

100 std::queue<size_t> node_queue;
101 std::vector<size_t> parent;
102
103 parent.resize(node_count + 1, 0);
104
105 node_queue.push(from_node);
106
107 visited[from_node] = 1;
108
109 while (!node_queue.empty()) {
110 size_t current_node = node_queue.front();
111
112 node_queue.pop();
113
114 if (current_node == to_node) {
115 break;
116 }
117
118 for (size_t next_node : node_to_edges[current_node]) {
119 if (residual_graph[current_node][next_node] > 0) {
120 if (visited[next_node] == 0) {
121 visited[next_node] = 1;
122 parent[next_node] = current_node;
123 node_queue.push(next_node);
124 }
125 }
126 }
127 }
128
129 if (!visited[to_node]) {
130 return 0;
131 }
132
133 size_t current_node = to_node;
134 i64 augment = INFINITY;
135
136 while (current_node != from_node) {
137 augment = std::min(
138 augment, residual_graph[parent[current_node]][

current_node]);
139 current_node = parent[current_node];
140 }

37

141
142 current_node = to_node;
143
144 while (current_node != from_node) {
145 residual_graph[parent[current_node]][current_node] -=

augment;
146 residual_graph[current_node][parent[current_node]] +=

augment;
147
148 current_node = parent[current_node];
149 }
150
151 return augment;
152 }
153 };
154
155 int main() {
156 int T = 0;
157 std::scanf("%d", &T);
158
159 for (int id = 0; id < T; id++) {
160
161 size_t node_count, edge_count, source_node, target_node;
162
163 std::scanf("%zu%zu%zu%zu", &node_count, &edge_count, &

source_node,
164 &target_node);
165
166 std::vector<std::vector<Edge>> graph;
167
168 graph.resize(node_count + 1);
169
170 for (size_t i = 0; i < edge_count; i++) {
171 size_t from_node, to_node;
172 from_node = to_node = 0;
173 i64 weight = 0;
174
175 std::scanf("%zu%zu%lld", &from_node, &to_node, &weight);
176
177 graph[from_node].emplace_back(to_node, weight);
178 }
179
180 EK ek{graph};
181
182 std::printf("%lld\n", ek.max_flow(source_node, target_node));
183 }
184 }

Dinic
1 // O((V^2)E)

38

2 // 处理了反平行边、重边、自环
3 // 反平行边：新建节点
4 // 重边：容量相加
5 // 自环：直接移除
6
7 #include <cstdio>
8 #include <cstring>
9 #include <queue>

10 #include <vector>
11
12 #define MAX_NODE 2005
13 #define INFINITY (1LL << 60)
14
15 typedef long long i64;
16
17 i64 residual_graph[MAX_NODE][MAX_NODE];
18
19 struct Edge {
20 size_t to;
21 i64 weight;
22
23 explicit constexpr Edge(size_t to_, i64 weight_)
24 : to{to_}, weight{weight_} {}
25 };
26
27 class Dinic {
28 public:
29 size_t node_count;
30
31 private:
32 std::vector<std::vector<size_t>> node_to_edges;
33
34 public:
35 explicit Dinic(std::vector<std::vector<Edge>> const &graph) {
36 std::memset(residual_graph, 0, sizeof(residual_graph));
37 node_count = graph.size() - 1;
38 node_to_edges.resize(graph.size());
39
40 for (size_t from_node = 0; from_node < graph.size(); from_node

++) {
41 for (Edge const &edge : graph[from_node]) {
42 size_t to_node = edge.to;
43 i64 weight = edge.weight;
44
45 // antiparallel edge exists
46 // parallel edges are allowed
47 if (residual_graph[to_node][from_node] != 0) {
48 node_count++;
49
50 residual_graph[from_node][node_count] += weight;
51 residual_graph[node_count][to_node] += weight;

39

52
53 if (node_count > node_to_edges.size() - 1) {
54 node_to_edges.resize(2 * node_count);
55 }
56
57 // 注意须在node_to_edges（对应残余图）中建立反向边
58 node_to_edges[from_node].push_back(node_count);
59 node_to_edges[node_count].push_back(from_node);
60 node_to_edges[node_count].push_back(to_node);
61 node_to_edges[to_node].push_back(node_count);
62 } else {
63 residual_graph[from_node][to_node] += weight;
64 node_to_edges[from_node].push_back(to_node);
65 node_to_edges[to_node].push_back(from_node);
66 }
67 }
68 }
69 // remove self loop
70
71 for (size_t i = 0; i <= node_count; i++) {
72 residual_graph[i][i] = 0;
73 }
74 }
75
76 i64 max_flow(size_t source_node, size_t target_node) {
77 i64 max_flow = 0;
78
79 while (true) {
80 std::vector<size_t> node_to_depth =
81 rg_bfs(source_node, target_node);
82
83 // 汇点已经不可达，不可能再有增广路径
84 if (node_to_depth[target_node] == 0) {
85 break;
86 }
87
88 i64 augment =
89 dfs(source_node, target_node, INFINITY, node_to_depth);
90
91 if (augment == 0) {
92 break;
93 }
94
95 max_flow += augment;
96 }
97
98 return max_flow;
99 }

100
101 private:
102 // BFS分层，返回每个节点的层数

40

103 std::vector<size_t> rg_bfs(size_t from_node, size_t to_node) {
104 std::vector<int> visited;
105
106 visited.resize(node_count + 1, 0);
107
108 std::queue<size_t> node_queue;
109 std::vector<size_t> parent;
110 std::vector<size_t> depth;
111
112 parent.resize(node_count + 1, 0);
113 depth.resize(node_count + 1, 0);
114
115 node_queue.push(from_node);
116 depth[from_node] = 1;
117 visited[from_node] = 1;
118
119 while (!node_queue.empty()) {
120 size_t current_node = node_queue.front();
121
122 node_queue.pop();
123
124 if (current_node == to_node) {
125 break;
126 }
127
128 for (size_t next_node : node_to_edges[current_node]) {
129 if (residual_graph[current_node][next_node] > 0) {
130 if (visited[next_node] == 0) {
131 depth[next_node] = depth[current_node] + 1;
132 visited[next_node] = 1;
133 parent[next_node] = current_node;
134 node_queue.push(next_node);
135 }
136 }
137 }
138 }
139
140 return depth;
141 }
142
143 // in_flow：尝试输入该节点的流量，对于入点，为INFINITY
144 // 返回：实际成功输入的流量
145 i64 dfs(size_t from_node, size_t to_node, i64 in_flow,
146 std::vector<size_t> &depth) {
147 if ((from_node == to_node) || (in_flow == 0)) {
148 return in_flow;
149 }
150
151 // 还需要从该节点的出边分配的流量
152 i64 remain_flow = in_flow;
153

41

154 for (size_t next_node : node_to_edges[from_node]) {
155 // 仅考虑下一层的节点
156 if (depth[next_node] == depth[from_node] + 1) {
157 if (residual_graph[from_node][next_node] > 0) {
158 // 对于每一条出边，尝试分配尽可能多的流量
159 i64 to_allocate_flow = std::min(
160 remain_flow, residual_graph[from_node][

next_node]);
161
162 // 实际成功分配的流量
163 i64 allocated_flow =
164 dfs(next_node, to_node, to_allocate_flow, depth

);
165
166 // 下层节点已经枯竭，在之后的所有操作中都不再尝试向

该节点分配流量
167 if (allocated_flow == 0) {
168 depth[next_node] = 0;
169 }
170
171 remain_flow -= allocated_flow;
172
173 residual_graph[from_node][next_node] -=

allocated_flow;
174 residual_graph[next_node][from_node] +=

allocated_flow;
175 }
176 }
177
178 if (remain_flow == 0) {
179 break;
180 }
181 }
182
183 return (in_flow - remain_flow);
184 }
185 };
186
187 int main() {
188 int T = 0;
189 std::scanf("%d", &T);
190
191 for (int id = 0; id < T; id++) {
192
193 size_t node_count, edge_count, source_node, target_node;
194
195 std::scanf("%zu%zu%zu%zu", &node_count, &edge_count, &

source_node,
196 &target_node);
197
198 std::vector<std::vector<Edge>> graph;

42

199
200 graph.resize(node_count + 1);
201
202 for (size_t i = 0; i < edge_count; i++) {
203 size_t from_node, to_node;
204 from_node = to_node = 0;
205 i64 weight = 0;
206
207 std::scanf("%zu%zu%lld", &from_node, &to_node, &weight);
208
209 graph[from_node].emplace_back(to_node, weight);
210 }
211
212 Dinic dinic{graph};
213
214 std::printf("%lld\n", dinic.max_flow(source_node, target_node))

;
215 }
216 }

FFT

1 #include <cmath>
2 #include <complex>
3 #include <cstdio>
4 #include <vector>
5
6 double const PI = std::acos(-1);
7
8 using Complex = std::complex<double>; // STL complex
9

10 constexpr int MAX_N = 1 << 20;
11
12 int rev[MAX_N];
13
14 void change(Complex y[], int len);
15 void fft(Complex y[], int len, int on);
16
17 int main(void) {
18 std::vector<double> v{1, 1, -1, 2, 1, 0, -1, 1};
19 std::vector<Complex> cv;
20 cv.resize(v.size());
21
22 for (size_t i = 0; i < v.size(); i++) {
23 cv[i].real(v[i]);
24 cv[i].imag(0);
25 }
26
27 fft(cv.data(), cv.size(), 1);

43

28
29 for (size_t i = 0; i < v.size(); i++) {
30 std::printf("%.5f + %.5fi\n", cv[i].real(), cv[i].imag());
31 }
32 }
33
34 // 同样需要保证 len 是 2 的幂
35 // 记 rev[i] 为 i 翻转后的值
36 void change(Complex y[], int len) {
37 for (int i = 0; i < len; ++i) {
38 rev[i] = rev[i >> 1] >> 1;
39 if (i & 1) { // 如果最后一位是 1，则翻转成 len/2
40 rev[i] |= len >> 1;
41 }
42 }
43 for (int i = 0; i < len; ++i) {
44 if (i < rev[i]) { // 保证每对数只翻转一次
45 swap(y[i], y[rev[i]]);
46 }
47 }
48 return;
49 }
50
51 /*
52 * 做 FFT
53 * len 必须是 2^k 形式
54 * on == 1 时是 DFT，on == -1 时是 IDFT
55 */
56 void fft(Complex y[], int len, int on) {
57 // 位逆序置换
58 change(y, len);
59 // 模拟合并过程，一开始，从长度为一合并到长度为二，一直合并到长度为

len。
60 for (int h = 2; h <= len; h <<= 1) {
61 // wn：当前单位复根的间隔：w^1_h
62 Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));
63 // 合并，共 len / h 次。
64 for (int j = 0; j < len; j += h) {
65 // 计算当前单位复根，一开始是 1 = w^0_n，之后是以 wn 为间隔

递增：
66 // w^1_n
67 // ...
68 Complex w(1, 0);
69 for (int k = j; k < j + h / 2; k++) {
70 // 左侧部分和右侧是子问题的解
71 Complex u = y[k];
72 Complex t = w * y[k + h / 2];
73 // 这就是把两部分分治的结果加起来
74 y[k] = u + t;
75 y[k + h / 2] = u - t;
76 // 后半个 「step」 中的ω一定和 「前半个」 中的成相反数

44

77 // 「红圈」上的点转一整圈「转回来」，转半圈正好转成相反
数

78 // 一个数相反数的平方与这个数自身的平方相等
79 w = w * wn;
80 }
81 }
82 }
83 // 如果是 IDFT，它的逆矩阵的每一个元素不只是原元素取倒数，还要除以

长度 len。
84 if (on == -1) {
85 for (int i = 0; i < len; i++) {
86 y[i].real(y[i].real() / len);
87 y[i].imag(y[i].imag() / len);
88 }
89 }
90 }

多项式乘法

1 #include <algorithm>
2 #include <cmath>
3 #include <complex>
4 #include <cstdio>
5 #include <vector>
6
7 #define EPS 1e-6
8
9 typedef double number;

10 typedef long long i64;
11
12 double const PI = std::acos(-1);
13
14 using Complex = std::complex<number>; // STL complex
15 void change(Complex y[], int len);
16 void fft(Complex y[], int len, int on);
17
18 class Multiplier {
19 private:
20 std::vector<Complex> a_coff_list;
21 std::vector<Complex> b_coff_list;
22 size_t a_len;
23 size_t b_len;
24 size_t input_len;
25
26 public:
27 explicit Multiplier(std::vector<number> const &a_list,
28 std::vector<number> const &b_list) {
29 input_len = std::max(a_list.size(), b_list.size());
30 size_t len = nextPowerOfTwo(2 * input_len);

45

31
32 a_len = a_list.size();
33 b_len = b_list.size();
34
35 a_coff_list.resize(len);
36 b_coff_list.resize(len);
37
38 for (size_t i = 0; i < a_list.size(); i++) {
39 a_coff_list[i].real(a_list[i]);
40 }
41
42 for (size_t i = 0; i < b_list.size(); i++) {
43 b_coff_list[i].real(b_list[i]);
44 }
45 }
46
47 // can only be called once!!!
48 std::vector<number> multiply() {
49 fft(a_coff_list, false);
50 fft(b_coff_list, false);
51
52 std::vector<Complex> c_coff_list;
53 c_coff_list.resize(a_coff_list.size());
54
55 std::transform(std::begin(a_coff_list), std::end(a_coff_list),
56 std::begin(b_coff_list), std::begin(c_coff_list)

,
57 [](Complex a, Complex b) { return a * b; });
58
59 fft(c_coff_list, true);
60
61 std::vector<number> result;
62 result.resize(a_len + b_len - 1);
63
64 std::transform(std::begin(c_coff_list),
65 std::begin(c_coff_list) + (long)(a_len + b_len -

1),
66 std::begin(result), [](Complex a) { return a.

real(); });
67
68 return result;
69 }
70
71 private:
72 size_t nextPowerOfTwo(size_t input) {
73 if (input == 0) {
74 return 1;
75 }
76
77 input--;
78

46

79 input |= (input >> 1);
80 input |= (input >> 2);
81 input |= (input >> 4);
82 input |= (input >> 8);
83 input |= (input >> 16);
84 input |= (input >> 32);
85
86 return (input + 1);
87 }
88
89 // 同样需要保证 len 是 2 的幂
90 // 记 rev[i] 为 i 翻转后的值
91 void change(std::vector<Complex> &y) {
92 std::vector<size_t> rev;
93 size_t len = y.size();
94 rev.resize(len, 0);
95
96 for (size_t i = 0; i < len; ++i) {
97 rev[i] = rev[i >> 1] >> 1;
98 if (i & 1) { // 如果最后一位是 1，则翻转成 len/2
99 rev[i] |= len >> 1;

100 }
101 }
102 for (size_t i = 0; i < len; ++i) {
103 if (i < rev[i]) { // 保证每对数只翻转一次
104 std::swap(y[i], y[rev[i]]);
105 }
106 }
107 return;
108 }
109
110 /*
111 * 做 FFT
112 * len 必须是 2^k 形式
113 * reverse == false 时是 DFT，reverse == true 时是 IDFT
114 */
115 void fft(std::vector<Complex> &y, bool reverse) {
116 size_t len = y.size();
117
118 // 位逆序置换
119
120 change(y);
121
122 int on = 1;
123 if (reverse) {
124 on = -1;
125 }
126
127 // 模拟合并过程，一开始，从长度为一合并到长度为二，一直合并到长

度为
128 // len。

47

129 for (size_t h = 2; h <= len; h <<= 1) {
130 // wn：当前单位复根的间隔：w^1_h
131 Complex wn(cos(2 * PI / (double)h), sin(on * 2 * PI / (

double)h));
132 // 合并，共 len / h 次。
133 for (size_t j = 0; j < len; j += h) {
134 // 计算当前单位复根，一开始是 1 = w^0_n，之后是以 wn
135 // 为间隔递增： w^1_n
136 // ...
137 Complex w(1, 0);
138 for (size_t k = j; k < j + h / 2; k++) {
139 // 左侧部分和右侧是子问题的解
140 Complex u = y[k];
141 Complex t = w * y[k + h / 2];
142 // 这就是把两部分分治的结果加起来
143 y[k] = u + t;
144 y[k + h / 2] = u - t;
145 // 后半个 「step」 中的ω一定和 「前半个」 中的成相

反数
146 // 「红圈」上的点转一整圈「转回来」，转半圈正好转成

相反数
147 // 一个数相反数的平方与这个数自身的平方相等
148 w = w * wn;
149 }
150 }
151 }
152 // 如果是 IDFT，它的逆矩阵的每一个元素不只是原元素取倒数，还要

除以长度
153 // len。
154 if (on == -1) {
155 for (size_t i = 0; i < len; i++) {
156 y[i].real(y[i].real() / (double)len);
157 }
158 }
159 }
160 };
161
162 int main(void) {
163 size_t a_len = 0;
164 size_t b_len = 0;
165 std::scanf("%zu%zu", &a_len, &b_len);
166
167 a_len++;
168 b_len++;
169
170 std::vector<number> a_list;
171 std::vector<number> b_list;
172 a_list.reserve(a_len);
173 b_list.reserve(b_len);
174
175 for (size_t i = 0; i < a_len; i++) {

48

176 double input = 0;
177 std::scanf("%lf", &input);
178 a_list.push_back(input);
179 }
180
181 for (size_t i = 0; i < b_len; i++) {
182 double input = 0;
183 std::scanf("%lf", &input);
184 b_list.push_back(input);
185 }
186
187 Multiplier mul{a_list, b_list};
188
189 std::vector<number> result = mul.multiply();
190
191 for (size_t i = 0; i < result.size(); i++) {
192 std::printf("%lld ", (i64)(result[i] + 0.5));
193 }
194
195 std::putchar('\n');
196
197 return 0;
198 }

大整数乘法

1 #include <algorithm>
2 #include <cmath>
3 #include <complex>
4 #include <cstdio>
5 #include <cstring>
6 #include <vector>
7
8 #define BUFFER_LEN 1000005
9 #define EPS 1e-6

10
11 typedef double number;
12 typedef long long i64;
13
14 double const PI = std::acos(-1);
15
16 char buffer[BUFFER_LEN] = {0};
17
18 using Complex = std::complex<number>; // STL complex
19 void change(Complex y[], int len);
20 void fft(Complex y[], int len, int on);
21 std::vector<number> get_big_int();
22
23 class Multiplier {

49

24 private:
25 std::vector<Complex> a_coff_list;
26 std::vector<Complex> b_coff_list;
27 size_t a_len;
28 size_t b_len;
29 size_t input_len;
30
31 public:
32 explicit Multiplier(std::vector<number> const &a_list,
33 std::vector<number> const &b_list) {
34 input_len = std::max(a_list.size(), b_list.size());
35 size_t len = nextPowerOfTwo(2 * input_len);
36
37 a_len = a_list.size();
38 b_len = b_list.size();
39
40 a_coff_list.resize(len);
41 b_coff_list.resize(len);
42
43 for (size_t i = 0; i < a_list.size(); i++) {
44 a_coff_list[i].real(a_list[i]);
45 }
46
47 for (size_t i = 0; i < b_list.size(); i++) {
48 b_coff_list[i].real(b_list[i]);
49 }
50 }
51
52 // can only be called once!!!
53 std::vector<number> multiply() {
54 fft(a_coff_list, false);
55 fft(b_coff_list, false);
56
57 std::vector<Complex> c_coff_list;
58 c_coff_list.resize(a_coff_list.size());
59
60 std::transform(std::begin(a_coff_list), std::end(a_coff_list),
61 std::begin(b_coff_list), std::begin(c_coff_list)

,
62 [](Complex a, Complex b) { return a * b; });
63
64 fft(c_coff_list, true);
65
66 std::vector<number> result;
67 result.resize(a_len + b_len - 1);
68
69 std::transform(std::begin(c_coff_list),
70 std::begin(c_coff_list) + (long)(a_len + b_len -

1),
71 std::begin(result), [](Complex a) { return a.

real(); });

50

72
73 return result;
74 }
75
76 private:
77 size_t nextPowerOfTwo(size_t input) {
78 if (input == 0) {
79 return 1;
80 }
81
82 input--;
83
84 input |= (input >> 1);
85 input |= (input >> 2);
86 input |= (input >> 4);
87 input |= (input >> 8);
88 input |= (input >> 16);
89 input |= (input >> 32);
90
91 return (input + 1);
92 }
93
94 // 同样需要保证 len 是 2 的幂
95 // 记 rev[i] 为 i 翻转后的值
96 void change(std::vector<Complex> &y) {
97 std::vector<size_t> rev;
98 size_t len = y.size();
99 rev.resize(len, 0);

100
101 for (size_t i = 0; i < len; ++i) {
102 rev[i] = rev[i >> 1] >> 1;
103 if (i & 1) { // 如果最后一位是 1，则翻转成 len/2
104 rev[i] |= len >> 1;
105 }
106 }
107 for (size_t i = 0; i < len; ++i) {
108 if (i < rev[i]) { // 保证每对数只翻转一次
109 std::swap(y[i], y[rev[i]]);
110 }
111 }
112 return;
113 }
114
115 /*
116 * 做 FFT
117 * len 必须是 2^k 形式
118 * reverse == false 时是 DFT，reverse == true 时是 IDFT
119 */
120 void fft(std::vector<Complex> &y, bool reverse) {
121 size_t len = y.size();
122

51

123 // 位逆序置换
124
125 change(y);
126
127 int on = 1;
128 if (reverse) {
129 on = -1;
130 }
131
132 // 模拟合并过程，一开始，从长度为一合并到长度为二，一直合并到长

度为
133 // len。
134 for (size_t h = 2; h <= len; h <<= 1) {
135 // wn：当前单位复根的间隔：w^1_h
136 Complex wn(cos(2 * PI / (double)h), sin(on * 2 * PI / (

double)h));
137 // 合并，共 len / h 次。
138 for (size_t j = 0; j < len; j += h) {
139 // 计算当前单位复根，一开始是 1 = w^0_n，之后是以 wn
140 // 为间隔递增： w^1_n
141 // ...
142 Complex w(1, 0);
143 for (size_t k = j; k < j + h / 2; k++) {
144 // 左侧部分和右侧是子问题的解
145 Complex u = y[k];
146 Complex t = w * y[k + h / 2];
147 // 这就是把两部分分治的结果加起来
148 y[k] = u + t;
149 y[k + h / 2] = u - t;
150 // 后半个 「step」 中的ω一定和 「前半个」 中的成相

反数
151 // 「红圈」上的点转一整圈「转回来」，转半圈正好转成

相反数
152 // 一个数相反数的平方与这个数自身的平方相等
153 w = w * wn;
154 }
155 }
156 }
157 // 如果是 IDFT，它的逆矩阵的每一个元素不只是原元素取倒数，还要

除以长度
158 // len。
159 if (on == -1) {
160 for (size_t i = 0; i < len; i++) {
161 y[i].real(y[i].real() / (double)len);
162 }
163 }
164 }
165 };
166
167 int main(void) {
168 std::vector<number> a_digit_list = get_big_int();

52

169 std::vector<number> b_digit_list = get_big_int();
170
171 Multiplier mul{a_digit_list, b_digit_list};
172
173 std::vector<number> temp = mul.multiply();
174
175 std::vector<int> result;
176 result.resize(2 * temp.size(), 0);
177
178 int carry = 0;
179
180 for (size_t i = 0; i < temp.size(); i++) {
181 int current_digit = (int)(temp[i] + 0.5);
182
183 current_digit += carry;
184
185 result[i] = current_digit % 10;
186 carry = current_digit / 10;
187 }
188
189 size_t result_len = 0;
190
191 for (size_t i = temp.size(); i < result.size(); i++) {
192 int current_digit = carry;
193
194 result[i] = current_digit % 10;
195 carry = current_digit / 10;
196
197 if (carry == 0 && result[i] == 0) {
198 result_len = i;
199 break;
200 }
201 }
202
203 for (size_t i = 0; i < result_len; i++) {
204 std::putchar(result[result_len - i - 1] + '0');
205 }
206
207 std::putchar('\n');
208
209 return 0;
210 }
211
212 std::vector<number> get_big_int() {
213 std::vector<number> result;
214 std::scanf("%s", buffer);
215
216 size_t num_len = std::strlen(buffer);
217
218 result.resize(num_len, 0);
219

53

220 for (size_t i = 0; i < num_len; i++) {
221 result[num_len - i - 1] = (number)(buffer[i] - '0');
222 }
223
224 return result;
225 }

数论

高精度

1 #include <algorithm>
2 #include <cctype>
3 #include <cstdio>
4 #include <string>
5 #include <vector>
6
7 struct BigInt {
8 std::vector<int> digits;
9 size_t len;

10
11 explicit BigInt(size_t capacity) {
12 digits.resize(capacity, 0);
13 len = 1;
14 };
15
16 explicit BigInt(size_t capacity, long long from) {
17 digits.resize(capacity, 0);
18
19 size_t i = 0;
20
21 while (from > 0) {
22 digits[i] = (int)(from % 10);
23 from /= 10;
24 i++;
25 }
26
27 len = i;
28
29 if (len == 0) {
30 len = 1;
31 }
32 }
33
34 explicit BigInt(size_t capacity, std::string const &from) {
35 size_t valid_len = from.size();
36
37 for (size_t i = 0; i < from.size(); i++) {

54

38 if (!std::isalnum(from[i])) {
39 valid_len = i;
40 break;
41 }
42 }
43
44 digits.resize(capacity, 0);
45
46 for (size_t i = 0; i < valid_len; i++) {
47 digits[i] = from[from.size() - i - 1] - '0';
48 }
49
50 len = valid_len;
51
52 if (len == 0) {
53 len = 1;
54 }
55 }
56
57 friend BigInt operator+(BigInt const &left, BigInt const &right) {
58 BigInt result{std::max(left.digits.size(), right.digits.size())

};
59
60 size_t new_len = 0;
61
62 if (left.len > right.len) {
63 std::copy_n(std::begin(left.digits), left.len,
64 std::begin(result.digits));
65 for (size_t i = 0; i < right.len; i++) {
66 result.digits[i] += right.digits[i];
67 }
68
69 new_len = left.len;
70 } else {
71 std::copy_n(std::begin(right.digits), right.len,
72 std::begin(result.digits));
73
74 for (size_t i = 0; i < left.len; i++) {
75 result.digits[i] += left.digits[i];
76 }
77
78 new_len = right.len;
79 }
80
81 int carry = 0;
82 for (size_t i = 0; i < result.digits.size(); i++) {
83 result.digits[i] += carry;
84 carry = result.digits[i] / 10;
85 result.digits[i] %= 10;
86
87 if (i >= new_len && carry == 0 && result.digits[i] == 0) {

55

88 new_len = i;
89 break;
90 }
91 }
92
93 result.len = new_len;
94
95 if (result.len == 0) {
96 result.len = 1;
97 }
98 return result;
99 }

100
101 friend BigInt operator-(BigInt const &left, BigInt const &right) {
102 BigInt result{left.digits.capacity()};
103
104 std::copy_n(std::begin(left.digits), left.len,
105 std::begin(result.digits));
106
107 for (size_t i = 0; i < left.len; i++) {
108 result.digits[i] -= right.digits[i];
109 }
110
111 int borrow = 0;
112
113 for (size_t i = 0; i < left.len; i++) {
114 result.digits[i] -= borrow;
115
116 if (result.digits[i] < 0) {
117 borrow = -result.digits[i] / 10 + 1;
118 result.digits[i] += borrow * 10;
119 }
120 }
121
122 for (size_t i = 0; i < left.len; i++) {
123 size_t idx = (left.len - i - 1);
124
125 if (result.digits[i] != 0) {
126 result.len = idx + 1;
127 break;
128 }
129 }
130
131 if (result.len == 0) {
132 result.len = 1;
133 }
134
135 return result;
136 }
137
138 friend BigInt operator*(BigInt const &left, BigInt const &right) {

56

139 BigInt result{std::max(left.digits.size(), right.digits.size())
};

140
141 for (size_t i = 0; i < left.len; i++) {
142 for (size_t j = 0; j < right.len; j++) {
143 result.digits[i + j] += left.digits[i] * right.digits[j

];
144 }
145 }
146
147 int carry = 0;
148 for (size_t i = 0; i < result.digits.size(); i++) {
149 result.digits[i] += carry;
150 carry = result.digits[i] / 10;
151 result.digits[i] %= 10;
152 }
153
154 result.len = 1;
155
156 for (size_t i = 0; i < (left.len + right.len + 1); i++) {
157 size_t idx = left.len + right.len - i;
158
159 if (result.digits[idx] != 0) {
160 result.len = idx + 1;
161 break;
162 }
163 }
164
165 return result;
166 }
167
168 std::string to_string() {
169 std::string s;
170
171 s.resize(len, '0');
172
173 for (size_t i = 0; i < len; i++) {
174 s[len - i - 1] = (char)digits[i] + '0';
175 }
176
177 return s;
178 }
179 };
180
181 int main(void) {
182 long long a, b;
183 a = b = 0;
184
185 std::scanf("%lld%lld", &a, &b);
186
187 BigInt b_a{1000, a};

57

188 BigInt b_b{1000, b};
189
190 std::printf("a + b: %s\n", (b_a + b_b).to_string().data());
191 std::printf("a - b: %s\n", (b_a - b_b).to_string().data());
192 std::printf("a * b: %s\n", (b_a * b_b).to_string().data());
193
194 return 0;
195 }

GCD

1 #include <cstdlib>
2 #include <tuple>
3 #include <utility>
4
5 typedef int number;
6
7 number gcd(number a, number b) {
8 a = std::abs(a);
9 b = std::abs(b);

10 if (a < b) {
11 std::swap(a, b);
12 }
13
14 while (b > 0) {
15 number temp = b;
16 b = a % b;
17 a = temp;
18 }
19
20 return a;
21 }
22
23 // d = gcd(a, b) = ax + by
24 struct EEResult {
25 number d;
26 number x;
27 number y;
28 };
29
30 EEResult exgcd(number a, number b) {
31 a = std::abs(a);
32 b = std::abs(b);
33
34 number x = 1, y = 0;
35
36 number x1 = 0, y1 = 1, a1 = a, b1 = b;
37 while (b1 > 0) {
38 number q = a1 / b1;

58

39 std::tie(x, x1) = std::make_tuple(x1, x - q * x1);
40 std::tie(y, y1) = std::make_tuple(y1, y - q * y1);
41 std::tie(a1, b1) = std::make_tuple(b1, a1 - q * b1);
42 }
43 return EEResult{a1, x, y};
44 }

线性同余方程

1 #include <cstdlib>
2 #include <tuple>
3
4 typedef int number;
5
6 // d = gcd(a, b) = ax + by
7 struct EEResult {
8 number d;
9 number x;

10 number y;
11 };
12
13 EEResult exgcd(number a, number b) {
14 a = std::abs(a);
15 b = std::abs(b);
16
17 number x = 1, y = 0;
18
19 number x1 = 0, y1 = 1, a1 = a, b1 = b;
20 while (b1 > 0) {
21 number q = a1 / b1;
22 std::tie(x, x1) = std::make_tuple(x1, x - q * x1);
23 std::tie(y, y1) = std::make_tuple(y1, y - q * y1);
24 std::tie(a1, b1) = std::make_tuple(b1, a1 - q * b1);
25 }
26 return EEResult{a1, x, y};
27 }
28
29 // Solve ax = b (mod n) for x_0
30 // x_i = x_0 + i * (n / d), d = gcd(a, n)
31 // solvable if and only if: d | b
32
33 struct MLEResult {
34 bool solvable;
35 number x0;
36 };
37
38 MLEResult modular_linear_equation_solver(number a, number b, number n)

{
39 EEResult r = exgcd(a, n);

59

40
41 number d = r.d;
42
43 if (b % d == 0) {
44 return MLEResult{true, ((r.x * b / d) + n) % n};
45 } else {
46 return MLEResult{false, 0};
47 }
48 }

模下快速幂

1 typedef long long number;
2
3 // a ^ b mod n
4 number modular_exponentitaion(number a, number b, number n) {
5 number result = 1;
6 number temp = a % n;
7
8 while (b > 0) {
9 number current_digit = b % 2;

10
11 if (current_digit == 1) {
12 result = (result * temp) % n;
13 }
14
15 temp = (temp * temp) % n;
16
17 b /= 2;
18 }
19
20 return result;
21 }

CRT

1 #include <cstdlib>
2 #include <functional>
3 #include <numeric>
4 #include <tuple>
5 #include <vector>
6
7 typedef long long number;
8
9 // d = gcd(a, b) = ax + by

10 struct EEResult {
11 number d;

60

12 number x;
13 number y;
14 };
15
16 EEResult exgcd(number a, number b) {
17 number x = 1, y = 0;
18
19 number x1 = 0, y1 = 1, a1 = a, b1 = b;
20 while (b1 > 0) {
21 number q = a1 / b1;
22 std::tie(x, x1) = std::make_tuple(x1, x - q * x1);
23 std::tie(y, y1) = std::make_tuple(y1, y - q * y1);
24 std::tie(a1, b1) = std::make_tuple(b1, a1 - q * b1);
25 }
26 return EEResult{a1, x, y};
27 }
28
29 // Solve ax = b (mod n) for x_0
30 // x_i = x_0 + i * (n / d), d = gcd(a, n)
31 // solvable if and only if: d | b
32
33 struct MLEResult {
34 bool solvable;
35 number x0;
36 };
37
38 MLEResult modular_linear_equation_solver(number a, number b, number n)

{
39 EEResult r = exgcd(a, n);
40
41 number d = r.d;
42
43 if (b % d == 0) {
44 return MLEResult{true, ((r.x * b / d) + n) % n};
45 } else {
46 return MLEResult{false, 0};
47 }
48 }
49
50 // n = n_1n_2...n_k
51 // a = (a_1c_1 + a_2c_2 + ... + a_nc_n) mod n
52 struct CRTResult {
53 number a;
54 number n;
55 };
56
57 // n_1, n_2, ..., n_k are pairwise relative prime
58 // 求同余方程组：x = a_i (mod n_i)的解：x = a (mod n)
59 CRTResult crt(std::vector<number> const &a_list,
60 std::vector<number> const &n_list) {
61 number n = std::accumulate(std::begin(n_list), std::end(n_list), 1

61

LL,
62 std::multiplies<number>{});
63
64 number result = 0;
65 for (size_t i = 0; i < n_list.size(); i++) {
66 number n_i = n_list[i];
67 number m_i = n / n_i;
68
69 MLEResult r = modular_linear_equation_solver(m_i, 1, n_i);
70
71 number c_i = (r.x0 % n * m_i % n) % n;
72
73 result = (result + (a_list[i] * c_i) % n) % n;
74 }
75
76 return CRTResult{result, n};
77 }

字符串匹配

KMP

1 #include <string>
2 #include <vector>
3
4 #define MAX_STR_LEN 305
5 #define ALPHABET_LEN 30
6
7 // 状态q表示匹配了pattern的前q个字符
8 class KMPMatcher {
9 public:

10 std::string pattern;
11 std::vector<size_t> pi;
12
13 explicit KMPMatcher(std::string const &pattern) {
14 this->pattern = pattern;
15
16 generate_pi();
17 }
18
19 void generate_pi() {
20 pi.resize(pattern.size() + 1, 0);
21
22 size_t q = 0;
23
24 for (size_t i = 1; i < pattern.size(); i++) {
25 while (q > 0 && pattern[i] != pattern[q]) {
26 q = pi[q];

62

27 }
28
29 if (pattern[i] == pattern[q]) {
30 q++;
31 }
32
33 pi[i + 1] = q;
34 }
35 }
36
37 // O(N \sigma)
38 // verdict: E6 D
39 void generate_FA_transition_table(size_t delta[MAX_STR_LEN][

ALPHABET_LEN]) {
40 for (size_t l = 0; l < pi.size(); l++) {
41 for (size_t next_ch = 'a'; next_ch <= 'z'; next_ch++) {
42 size_t q = l;
43 while ((q > 0) && ((char)next_ch != pattern[q])) {
44 q = pi[q];
45 }
46
47 if ((char)next_ch == pattern[q]) {
48 delta[l][next_ch - 'a'] = q + 1;
49 } else {
50 delta[l][next_ch - 'a'] = q;
51 }
52 }
53 }
54 }
55
56 std::vector<size_t> match(std::string const &to_match) {
57 std::vector<size_t> matched_pos_list;
58
59 size_t q = 0;
60
61 for (size_t i = 0; i < to_match.size(); i++) {
62 while (q > 0 && to_match[i] != pattern[q]) {
63 q = pi[q];
64 }
65
66 // 0 下标，故已经匹配了q个字符的情况下，下一个比较的字符是

pattern[q]
67 if (to_match[i] == pattern[q]) {
68 q++;
69 }
70
71 if (q == pattern.size()) {
72 matched_pos_list.push_back(i + 1 - pattern.size());
73 q = pi[q];
74 }
75 }

63

76
77 return matched_pos_list;
78 }
79 };
80
81 int main(void) {
82 std::string pattern{"ababaca"};
83
84 KMPMatcher matcher{pattern};
85
86 return 0;
87 }

计算几何

1 #include <algorithm>
2 #include <cmath>
3 #include <vector>
4
5 #define MY_INFINITY (1LL << 60)
6
7 typedef long long number;
8
9 class Point {

10 public:
11 number x;
12 number y;
13
14 explicit constexpr Point(number a, number b) : x{a}, y{b} {};
15
16 friend Point operator-(Point const &left, Point const &right) {
17 return Point{left.x - right.x, left.y - right.y};
18 }
19
20 friend bool operator==(Point const &left, Point const &right) {
21 return (left.x == right.x) && (left.y == right.y);
22 }
23 };
24
25 struct PointHash {
26 std::size_t operator()(Point const &k) const noexcept {
27 size_t right = (size_t)k.y;
28
29 right += 0x9e3779b97f4a7c15;
30
31 right = ((right << 31) | (right >> (64 - 31)));
32
33 return ((size_t)k.x ^ right);
34 }

64

35 };
36
37 class Vector {
38 public:
39 number x;
40 number y;
41
42 explicit constexpr Vector(number a, number b) : x{a}, y{b} {};
43 explicit constexpr Vector(Point const &point) : x{point.x}, y{point

.y} {};
44 explicit constexpr Vector(Point const &from, Point const &to)
45 : x{to.x - from.x}, y{to.y - from.y} {};
46
47 friend Vector operator+(Vector const &left, Vector const &right) {
48 return Vector{left.x + right.x, left.y + right.y};
49 }
50
51 friend Vector operator-(Vector const &left, Vector const &right) {
52 return Vector{left.x - right.x, left.y - right.y};
53 }
54
55 friend Vector operator-(Vector const &self) {
56 return Vector{-self.x, -self.y};
57 }
58
59 friend number operator*(Vector const &left, Vector const &right) {
60 return left.x * right.x + left.y * right.y;
61 }
62
63 friend number operator^(Vector const &left, Vector const &right) {
64 return left.x * right.y - right.x * left.y;
65 }
66
67 double module() const {
68 return std::sqrt(this->x * this->x + this->y * this->y);
69 }
70 };
71
72 class Segment {
73 public:
74 Point from;
75 Point to;
76
77 explicit constexpr Segment(Point a, Point b) : from{a}, to{b} {};
78
79 Vector direction() const { return Vector{to.x - from.x, to.y - from

.y}; }
80
81 Segment reversed() const { return Segment{to, from}; }
82
83 bool on_segment(Point p) const {

65

84 Vector d = this->direction();
85
86 Vector d2 = Vector{p - this->from};
87
88 if ((d ^ d2) == 0) {
89 if (p.x >= std::min(from.x, to.x) &&
90 p.x <= std::max(from.x, to.x) &&
91 p.y >= std::min(from.y, to.y) &&
92 p.y <= std::max(from.y, to.y)) {
93 return true;
94 }
95 }
96
97 return false;
98 }
99

100 bool intersect(Segment const &s) const {
101 Vector this_direction = this->direction();
102 Vector s_direction = s.direction();
103
104 Vector d1 = Vector{s.from - this->from};
105 Vector d2 = Vector{s.from - this->to};
106 Vector d3 = Vector{this->from - s.from};
107 Vector d4 = Vector{this->from - s.to};
108
109 number pro1 = s_direction ^ d1;
110 number pro2 = s_direction ^ d2;
111 number pro3 = this_direction ^ d3;
112 number pro4 = this_direction ^ d4;
113
114 if (((pro1 > 0 && pro2 < 0) || (pro1 < 0 && pro2 > 0)) &&
115 ((pro3 > 0 && pro4 < 0) || (pro3 < 0 && pro4 > 0))) {
116 return true;
117 }
118
119 if (pro1 == 0 && s.on_segment(this->from)) {
120 return true;
121 }
122
123 if (pro2 == 0 && s.on_segment(this->to)) {
124 return true;
125 }
126
127 if (pro3 == 0 && on_segment(s.from)) {
128 return true;
129 }
130
131 if (pro4 == 0 && on_segment(s.to)) {
132 return true;
133 }
134

66

135 return false;
136 }
137 };
138
139 // 按极角排序
140 bool operator<(Point const &left, Point const &right) {
141 number cross_product = Vector{left} ^ Vector { right };
142 if (cross_product > 0) {
143 return true;
144 } else if (cross_product == 0) {
145 if (left.x > right.x) {
146 return false;
147 } else if (left.x < right.x) {
148 return true;
149 } else {
150 if (left.y > right.y) {
151 return false;
152 } else {
153 return true;
154 }
155 }
156 } else {
157 return false;
158 }
159 }
160
161 // 无需对point_list进行预处理
162 // 要求：不得含重复点！
163 std::vector<Point> convex_hull(std::vector<Point> point_list) {
164 number min_y = MY_INFINITY;
165 number min_x = MY_INFINITY;
166 auto origin_element = std::begin(point_list);
167
168 for (Point const &point : point_list) {
169 if (point.y < min_y) {
170 min_y = point.y;
171 }
172 }
173
174 for (auto iter = std::begin(point_list); iter != std::end(

point_list);
175 iter++) {
176 if (iter->y == min_y) {
177 if (iter->x < min_x) {
178 min_x = iter->x;
179 origin_element = iter;
180 }
181 }
182 }
183
184 for (Point &point : point_list) {

67

185 point.x -= min_x;
186 point.y -= min_y;
187 }
188
189 point_list.erase(origin_element);
190
191 std::sort(std::begin(point_list), std::end(point_list));
192 std::vector<Point> stack;
193
194 stack.reserve(point_list.size());
195
196 stack.emplace_back(0, 0);
197 stack.push_back(point_list[0]);
198 stack.push_back(point_list[1]);
199
200 for (size_t i = 2; i < point_list.size(); i++) {
201 while (true) {
202 Point const ¤t_top = stack.back();
203 Point const ¤t_next_to_top = stack[stack.size() - 2];
204 Vector v1 = Vector{current_next_to_top, current_top};
205 Vector v2 = Vector{current_next_to_top, point_list[i]};
206
207 if ((v1 ^ v2) > 0) {
208 break;
209 }
210
211 stack.pop_back();
212
213 if (stack.size() <= 1) {
214 break;
215 }
216 }
217
218 stack.push_back(point_list[i]);
219 }
220
221 return stack;
222 }
223
224 // 求周长（若为线段，则为2*线段长度）
225 double length(std::vector<Point> const &convex_hull_list) {
226 double result = 0.0;
227
228 size_t len = convex_hull_list.size();
229 for (size_t i = 0; i < len; i++) {
230 Point const &p1 = convex_hull_list[i];
231 Point const &p2 = convex_hull_list[(i + 1) % len];
232
233 Vector v{p1, p2};
234
235 result += v.module();

68

236 }
237
238 return result;
239 }
240
241 // 求多边形面积（返回2 * 面积）
242 // 注意转换为double除以2可能有精度问题！
243 number doubled_polygon_area(std::vector<Point> const &

sorted_convex_list) {
244 Point const &aux_ponint = *std::begin(sorted_convex_list);
245
246 number doubled_area = 0;
247
248 size_t len = sorted_convex_list.size();
249
250 for (size_t i = 0; i < len; i++) {
251 Vector v1{aux_ponint, sorted_convex_list[i]};
252 Vector v2{aux_ponint, sorted_convex_list[(i + 1) % len]};
253
254 doubled_area += (v1 ^ v2);
255 }
256
257 return std::abs(doubled_area);
258 }

Random

shuffle

1 #include <algorithm>
2 #include <random>
3 // 32 bit mersenne twister engine
4 auto const seed = std::random_device{}();
5 auto reng = std::mt19937{seed};
6 std::vector<int> v {0,1,2,3,4,5,6,7,8};
7 shuffle(begin(v)+2, begin(v)+7, reng);
8 for (int x : v) { cout << x <<' '; } // 0 1 ⋯ 7 8

均匀分布

1 #include <random>
2 // fixed seed
3 auto const seed = 123;
4 // Mersenne Twister random engine:
5 std::mt19937 urbg {seed};
6 // generate random ints � [1,6]

69

7 std::uniform_int_distribution<int> distr1 {1, 6};
8 auto const value1 = distr1(urbg);
9 auto const value2 = distr1(urbg);

10 // generate random floats � [-1.2,6.25)
11 std::uniform_real_distribution<float> distr2 {-1.2f, 6.25f};
12 auto const value3 = distr2(urbg);

70

	Template
	单调队列
	大顶堆
	排序
	归并排序
	堆排序
	快速排序

	哈希
	C++自定义哈希函数

	最长不增子序列
	并查集
	最近公共祖先
	图
	DFS
	拓扑排序
	DFS 拓扑排序
	DFS 强连通分量
	最小生成树
	最短路
	最大流

	FFT
	多项式乘法
	大整数乘法

	数论
	高精度
	GCD
	线性同余方程
	模下快速幂
	CRT

	字符串匹配
	KMP

	计算几何
	Random
	shuffle
	均匀分布

